Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNNbarToLLbarChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNNbarToLLbarChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include <algorithm>
 45 #include "G4INCLPhaseSpaceGenerator.hh"
 46 
 47 namespace G4INCL {
 48   
 49   NNbarToLLbarChannel::NNbarToLLbarChannel(Particle *p1, Particle *p2)
 50     : particle1(p1), particle2(p2)
 51     {}
 52   
 53   NNbarToLLbarChannel::~NNbarToLLbarChannel(){}
 54   
 55   void NNbarToLLbarChannel::fillFinalState(FinalState *fs) {
 56     // this channel include all states with lambdas, sigmas and xis and their antiparticles
 57 
 58         //brief ppbar
 59         // p pbar -> l lbar (BFMM 121)
 60         // ppbar -> l lbar pi0 (BFMM 113)
 61         // ppbar -> splus pim lbar || sminusbar pim l (BFMM 136)
 62         // ppbar -> sminus pip lbar || splusbar l pip (BFMM 146)
 63         // ppbar -> sp spbar (BFMM 139)
 64         // ppbar -> sm smbar (BFMM 149) 
 65         // ppbar -> szero szerobar (BFMM 144)
 66         // ppbar -> ximinus ximinusbar (BFMM 101)
 67         // ppbar -> szero lbar || szerobar l (BFMM 143)
 68         //
 69         //
 70         //brief npbar
 71         // n pbar -> l lbar pi- (BFMM 487)
 72         // n pbar -> l sbarplus || lbar sminus (BFMM 488)
 73         //
 74         //
 75         //brief nnbar
 76         // all same as for ppbar
 77         //
 78         //
 79         //brief pnbar
 80         // p nbar -> l lbar pi+ (same as BFMM 487)
 81         // p nbar -> l sbarminus || lbar splus (same as BFMM 488)
 82         //
 83 
 84     Particle *nucleon;
 85     Particle *antinucleon;
 86     
 87     if(particle1->isNucleon()){
 88       nucleon = particle1;
 89       antinucleon = particle2;
 90     }
 91     else{
 92       nucleon = particle2;
 93       antinucleon = particle1;
 94     }
 95         
 96     const G4double plab = 0.001*KinematicsUtils::momentumInLab(particle1, particle2); //GeV
 97     // ppbar cross sections
 98 
 99     const std::vector<G4double> BFMM121 = {2.379, -2.738, -1.260, -1.915, 0.430, 1.437};
100     //const G4double Eth_PPbar_LLbar = 1.437;
101     const std::vector<G4double> BFMM113 = {-0.105, 0.000, -5.099, 0.188, -0.050, 1.820};
102     //const G4double Eth_PPbar_LLbar_pi0 = 1.820;
103     const std::vector<G4double> BFMM139 = {0.142, -0.291, -1.702, -0.058, 0.001, 1.851};
104     //const G4double Eth_PPbar_SpSpbar = 1.851;
105     const std::vector<G4double> BFMM149 = {1.855, -2.238, -1.002, -1.279, 0.252, 1.896};
106     //const G4double Eth_PPbar_SmSmbar = 1.896;
107     const std::vector<G4double> BFMM136 = {1.749, -2.506, -1.222, -1.262, 0.274, 2.042};
108     //const G4double Eth_PPbar_SpLbar_pim = 2.042;
109     const std::vector<G4double> BFMM146 = {1.037, -1.437, -1.155, -0.709, 0.138, 2.065};
110     //const G4double Eth_PPbar_SmLbar_pip = 2.065;
111     const std::vector<G4double> BFMM143 = {0.652, -1.006, -1.805, -0.537, 0.121, 1.653};
112 
113 
114 
115     //const G4double Eth_PPbar_Szero_Lbar = 1.653;
116     //fixed due to limited data
117     G4double BFMM144; 
118     if(plab > 2.0) BFMM144 = 0.008; //sigmazero sigmazerobar
119     else BFMM144 = 0.0;
120     G4double BFMM101; 
121     if(plab > 2.8) BFMM101 = 0.002; //ximinus ximinusbar
122     else BFMM101 = 0.0;
123 
124     // npbar cross sections (fixed due to limited data)
125     G4double BFMM487;
126     if(plab > 2.1) BFMM487 = 0.048; //llbar piminus
127     else BFMM487 = 0.0;
128     G4double BFMM488;
129     if(plab > 2.0) BFMM488 = 0.139; //lsigmaminus +cc
130     else BFMM488 = 0.0;
131 
132     const G4double sqrtS = KinematicsUtils::totalEnergyInCM(nucleon, antinucleon);
133     const G4double totalppbar = KinematicsUtils::compute_xs(BFMM113, plab) 
134     +KinematicsUtils::compute_xs(BFMM139, plab) +KinematicsUtils::compute_xs(BFMM136, plab)
135     +KinematicsUtils::compute_xs(BFMM146, plab)+KinematicsUtils::compute_xs(BFMM143, plab) 
136     +KinematicsUtils::compute_xs(BFMM121, plab)+KinematicsUtils::compute_xs(BFMM149, plab)
137     +BFMM144 +BFMM101;
138     const G4double totalpnbar = BFMM487 + BFMM488;
139     const G4double rdm = Random::shoot();
140     
141     G4bool thirdparticle = false; //set true if we have pion
142     ParticleType PionType;
143     //setting types of new particles
144     if(nucleon->getType()==Proton){
145       if(antinucleon->getType()==antiProton){ //ppbar case
146         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)){ //llbar
147           nucleon->setType(Lambda);
148           antinucleon->setType(antiLambda);
149         }
150         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144){ //sigmazero sigmazerobar
151           nucleon->setType(SigmaZero);
152           antinucleon->setType(antiSigmaZero);
153         }
154         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101){ //ximinus ximinusbar
155           nucleon->setType(XiMinus);
156           antinucleon->setType(antiXiMinus);
157         }
158         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
159         +KinematicsUtils::compute_xs(BFMM113, plab)){ //llbar pi0
160           nucleon->setType(Lambda);
161           antinucleon->setType(antiLambda);
162           thirdparticle = true;
163           PionType = PiZero;
164         }
165         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
166         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)){ //splus lbar pim || sminusbar l pim
167           G4double rdm2 = Random::shoot();
168           if(rdm2 > 0.5){
169             nucleon->setType(SigmaPlus);
170             antinucleon->setType(antiLambda);
171             thirdparticle = true;
172             PionType = PiMinus;
173           }
174           else{
175             nucleon->setType(antiSigmaMinus);
176             antinucleon->setType(Lambda);
177             thirdparticle = true;
178             PionType = PiMinus;
179           }
180         }
181         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
182         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
183         +KinematicsUtils::compute_xs(BFMM146, plab)){ //sminus lbar pip || splussbar l pip
184           G4double rdm2 = Random::shoot();
185           if(rdm2 > 0.5){
186             nucleon->setType(SigmaMinus);
187             antinucleon->setType(antiLambda);
188             thirdparticle = true;
189             PionType = PiPlus;
190           }
191           else{
192             nucleon->setType(antiSigmaPlus);
193             antinucleon->setType(Lambda);
194             thirdparticle = true;
195             PionType = PiPlus;
196           }
197         }
198         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
199         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
200         +KinematicsUtils::compute_xs(BFMM146, plab)+KinematicsUtils::compute_xs(BFMM143, plab)){ //szero lbar || szerobar l 
201           G4double rdm2 = Random::shoot();
202           if(rdm2 > 0.5){
203             nucleon->setType(SigmaZero);
204             antinucleon->setType(antiLambda);
205           }
206           else{
207             nucleon->setType(antiSigmaZero);
208             antinucleon->setType(Lambda);
209           }
210         }
211         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
212         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
213         +KinematicsUtils::compute_xs(BFMM146, plab)+KinematicsUtils::compute_xs(BFMM143, plab)
214         +KinematicsUtils::compute_xs(BFMM139, plab)){ //sp spbar 
215           nucleon->setType(SigmaPlus);
216           antinucleon->setType(antiSigmaPlus);
217         }
218         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM121), plab)+BFMM144+BFMM101
219         +KinematicsUtils::compute_xs(std::move(BFMM113), plab)+KinematicsUtils::compute_xs(std::move(BFMM136), plab)
220         +KinematicsUtils::compute_xs(std::move(BFMM146), plab)+KinematicsUtils::compute_xs(std::move(BFMM143), plab)
221         +KinematicsUtils::compute_xs(std::move(BFMM139), plab)+KinematicsUtils::compute_xs(std::move(BFMM149), plab)){ //sm smbar
222           nucleon->setType(SigmaMinus);
223           antinucleon->setType(antiSigmaMinus);
224         }
225         else{
226           INCL_ERROR("out of total ppbar sum in LLbar channel");
227         }
228       }
229       else{ //pnbar case charge +1
230         if(rdm*totalpnbar < BFMM488){
231           G4double rdm2 = Random::shoot();
232           if(rdm2 > 0.5){
233             nucleon->setType(Lambda);
234             antinucleon->setType(antiSigmaMinus); //charge +1
235           }
236           else{
237             nucleon->setType(antiLambda);
238             antinucleon->setType(SigmaPlus); //charge +1
239           }
240         }
241         else{
242           nucleon->setType(Lambda);
243           antinucleon->setType(antiLambda);
244           thirdparticle = true;
245           PionType = PiPlus;
246         }
247       }
248     }
249     else{ // neutron
250       if(antinucleon->getType()==antiNeutron){ //nnbar case same as ppbar
251         if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)){ //llbar
252           nucleon->setType(Lambda);
253           antinucleon->setType(antiLambda);
254         }
255         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144){ //sigmazero sigmazerobar
256           nucleon->setType(SigmaZero);
257           antinucleon->setType(antiSigmaZero);
258         }
259         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101){ //ximinus ximinusbar
260           nucleon->setType(XiMinus);
261           antinucleon->setType(antiXiMinus);
262         }
263         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
264         +KinematicsUtils::compute_xs(BFMM113, plab)){ //llbar pi0
265           nucleon->setType(Lambda);
266           antinucleon->setType(antiLambda);
267           thirdparticle = true;
268           PionType = PiZero;
269         }
270         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
271         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)){ //splus lbar pim || sminusbar l pim
272           G4double rdm2 = Random::shoot();
273           if(rdm2 > 0.5){
274             nucleon->setType(SigmaPlus);
275             antinucleon->setType(antiLambda);
276             thirdparticle = true;
277             PionType = PiMinus;
278           }
279           else{
280             nucleon->setType(antiSigmaMinus);
281             antinucleon->setType(Lambda);
282             thirdparticle = true;
283             PionType = PiMinus;
284           }
285         }
286         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
287         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
288         +KinematicsUtils::compute_xs(BFMM146, plab)){ //sminus lbar pip || splussbar l pip
289           G4double rdm2 = Random::shoot();
290           if(rdm2 > 0.5){
291             nucleon->setType(SigmaMinus); //charge -1
292             antinucleon->setType(antiLambda);
293             thirdparticle = true;
294             PionType = PiPlus;
295           }
296           else{
297             nucleon->setType(antiSigmaPlus); //charge -1
298             antinucleon->setType(Lambda);
299             thirdparticle = true;
300             PionType = PiPlus;
301           }
302         }
303         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
304         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
305         +KinematicsUtils::compute_xs(BFMM146, plab)+KinematicsUtils::compute_xs(BFMM143, plab)){ //szero lbar || szerobar l 
306           G4double rdm2 = Random::shoot();
307           if(rdm2 > 0.5){
308             nucleon->setType(SigmaZero);
309             antinucleon->setType(antiLambda);
310           }
311           else{
312             nucleon->setType(antiSigmaZero);
313             antinucleon->setType(Lambda);
314           }
315         }
316         else if(rdm*totalppbar < KinematicsUtils::compute_xs(BFMM121, plab)+BFMM144+BFMM101
317         +KinematicsUtils::compute_xs(BFMM113, plab) + KinematicsUtils::compute_xs(BFMM136, plab)
318         +KinematicsUtils::compute_xs(BFMM146, plab)+KinematicsUtils::compute_xs(BFMM143, plab)
319         +KinematicsUtils::compute_xs(BFMM139, plab)){ //sp spbar 
320           nucleon->setType(SigmaPlus);
321           antinucleon->setType(antiSigmaPlus);
322         }
323         else if(rdm*totalppbar < KinematicsUtils::compute_xs(std::move(BFMM121), plab)+BFMM144+BFMM101
324         +KinematicsUtils::compute_xs(std::move(BFMM113), plab)+KinematicsUtils::compute_xs(std::move(BFMM136), plab)
325         +KinematicsUtils::compute_xs(std::move(BFMM146), plab)+KinematicsUtils::compute_xs(std::move(BFMM143), plab)
326         +KinematicsUtils::compute_xs(std::move(BFMM139), plab)+KinematicsUtils::compute_xs(std::move(BFMM149), plab)){ //sm smbar
327           nucleon->setType(SigmaMinus);
328           antinucleon->setType(antiSigmaMinus);
329         }
330         else{
331           INCL_ERROR("out of total nnbar sum in LLbar channel");
332         }
333       }
334       else{ //npbar case charge -1
335         if(rdm*totalpnbar < BFMM488){
336           G4double rdm2 = Random::shoot();
337           if(rdm2 > 0.5){
338             nucleon->setType(Lambda);
339             antinucleon->setType(antiSigmaPlus); //charge -1
340           }
341           else{
342             nucleon->setType(antiLambda);
343             antinucleon->setType(SigmaMinus); //charge -1
344           }
345         }
346         else{
347           nucleon->setType(Lambda);
348           antinucleon->setType(antiLambda);
349           thirdparticle = true;
350           PionType = PiMinus;
351         }
352       }
353     }
354 
355     //now assigning momentum to the final particles
356 
357     if(thirdparticle){ //three particles
358       ParticleList list;
359       list.push_back(nucleon);
360       list.push_back(antinucleon);
361       const ThreeVector &rcol = nucleon->getPosition();
362       const ThreeVector zero;
363       Particle *pion = new Particle(PionType,zero,rcol);
364       list.push_back(pion);
365       
366       PhaseSpaceGenerator::generate(sqrtS, list);
367       
368       fs->addModifiedParticle(nucleon);
369       fs->addModifiedParticle(antinucleon);
370       fs->addCreatedParticle(pion);
371     }
372     else{//only two particles
373       G4double mn=nucleon->getMass();
374       G4double my=antinucleon->getMass();
375       
376       G4double ey=(sqrtS*sqrtS+my*my-mn*mn)/(2*sqrtS);
377       G4double en=std::sqrt(ey*ey-my*my+mn*mn);
378       nucleon->setEnergy(en);
379       antinucleon->setEnergy(ey);
380       G4double py=std::sqrt(ey*ey-my*my);
381       
382       ThreeVector mom_antinucleon = Random::normVector(py);
383 
384       antinucleon->setMomentum(mom_antinucleon);
385       nucleon->setMomentum(-mom_antinucleon);
386 
387       fs->addModifiedParticle(nucleon);
388       fs->addModifiedParticle(antinucleon);
389     }
390         
391   }
392 }
393