Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNDeltaToDeltaLKChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNDeltaToDeltaLKChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include <algorithm>
 45 #include "G4INCLPhaseSpaceGenerator.hh"
 46 
 47 namespace G4INCL {
 48   
 49   const G4double NDeltaToDeltaLKChannel::angularSlope = 2.;
 50   
 51   NDeltaToDeltaLKChannel::NDeltaToDeltaLKChannel(Particle *p1, Particle *p2)
 52     : particle1(p1), particle2(p2)
 53     {}
 54   
 55   NDeltaToDeltaLKChannel::~NDeltaToDeltaLKChannel(){}
 56   
 57   G4double NDeltaToDeltaLKChannel::sampleDeltaMass(G4double ecm) {
 58     const G4double maxDeltaMass = ecm - ParticleTable::effectiveLambdaMass - ParticleTable::effectiveKaonMass - 1.0;
 59     const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
 60     const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
 61 // assert(deltaMassRndmRange>0.);
 62 
 63     G4double y=ecm*ecm;
 64     G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2 = (mNucleon + mPion)^2, 6.4E5 = 800^2 = (mNucleon - mPion)^2
 65     G4double q3=std::pow(std::sqrt(q2), 3.);
 66     const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3 = ???^3
 67     G4double x;
 68 
 69     G4int nTries = 0;
 70     G4bool success = false;
 71     while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
 72       if(++nTries >= 100000) {
 73         INCL_WARN("NDeltaToDeltaLKChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
 74               << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
 75         return ParticleTable::minDeltaMass;
 76       }
 77       
 78       G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
 79       y = std::tan(rndm);
 80       x = ParticleTable::effectiveDeltaMass + 0.5*ParticleTable::effectiveDeltaWidth*y;
 81 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveLambdaMass + ParticleTable::effectiveKaonMass + 1.0);
 82       
 83       // generation of the delta mass with the penetration factor
 84       // (see prc56(1997)2431)
 85       y=x*x;
 86       q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2 = (mNucleon + mPion)^2, 6.4E5 = 800^2 = (mNucleon - mPion)^2
 87       q3=std::pow(std::sqrt(q2), 3.);
 88       const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3 = ???^3
 89       rndm = Random::shoot();
 90       if (rndm*f3max < f3)
 91       success = true;
 92     }
 93     return x;
 94   }
 95   
 96   void NDeltaToDeltaLKChannel::fillFinalState(FinalState *fs) {
 97         // D++ p -> L K+ D++ (4)
 98         //
 99         // D++ n -> L K+ D+  (3)
100         // D++ n -> L K0 D++ (4)
101         //
102         // D+  p -> L K0 D++ (3)
103         // D+  p -> L K+ D+  (2)
104         //
105         // D+  n -> L K+ D0  (4)
106         // D+  n -> L K0 D+  (2)
107         
108         Particle *delta;
109         Particle *nucleon;
110         
111         if (particle1->isResonance()) {
112             delta = particle1;
113             nucleon = particle2;
114         }
115         else {
116             delta = particle2;
117             nucleon = particle1;
118         }
119     
120     
121     const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
122     
123     const G4int iso = ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
124     const G4int iso_d = ParticleTable::getIsospin(delta->getType());
125     const G4double rdm = Random::shoot();
126     
127 /*    const G4double m1 = particle1->getMass();
128     const G4double m2 = particle2->getMass();
129     const G4double pLab = KinematicsUtils::momentumInLab(particle1, particle2);*/
130     
131     ParticleType KaonType;
132     ParticleType DeltaType;
133     nucleon->setType(Lambda);
134     
135     if(std::abs(iso) == 4){// D++ p
136       KaonType = ParticleTable::getKaonType(iso/4);
137       DeltaType = ParticleTable::getDeltaType(3*iso/4);
138     }
139     else if(iso == 0){// D+  n
140       if(rdm*3 < 2){
141         KaonType = ParticleTable::getKaonType(iso_d);
142         DeltaType = ParticleTable::getDeltaType(-iso_d);
143       }
144       else{
145         KaonType = ParticleTable::getKaonType(-iso_d);
146         DeltaType = ParticleTable::getDeltaType(iso_d);
147       }
148     }
149     else if(ParticleTable::getIsospin(particle1->getType()) == ParticleTable::getIsospin(particle2->getType())){// D+  p
150       if(rdm*5 < 3){
151         KaonType = ParticleTable::getKaonType(-iso/2);
152         DeltaType = ParticleTable::getDeltaType(3*iso/2);
153       }
154       else{
155         KaonType = ParticleTable::getKaonType(iso/2);
156         DeltaType = ParticleTable::getDeltaType(iso/2);
157       }
158     }
159     else{// D++ n 
160       if(rdm*7 < 3){
161         KaonType = ParticleTable::getKaonType(iso/2);
162         DeltaType = ParticleTable::getDeltaType(iso/2);
163       }
164       else{
165         KaonType = ParticleTable::getKaonType(-iso/2);
166         DeltaType = ParticleTable::getDeltaType(3*iso/2);
167       }
168     }
169     
170     delta->setType(DeltaType);
171     delta->setMass(sampleDeltaMass(sqrtS));
172     
173     ParticleList list;
174     list.push_back(delta);
175     list.push_back(nucleon);
176     const ThreeVector &rcol = nucleon->getPosition();
177     const ThreeVector zero;
178     Particle *kaon = new Particle(KaonType,zero,rcol);
179     list.push_back(kaon);
180     
181     if(Random::shoot()<0.5) PhaseSpaceGenerator::generateBiased(sqrtS, list, 0, angularSlope);
182     else PhaseSpaceGenerator::generateBiased(sqrtS, list, 1, angularSlope);
183     
184     
185     fs->addModifiedParticle(delta);
186     fs->addModifiedParticle(nucleon);
187     fs->addCreatedParticle(kaon);
188     
189   }
190 }
191