Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLNDeltaOmegaProductionChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 44 #include "G4INCLPhaseSpaceGenerator.hh" 45 46 namespace G4INCL { 47 48 const G4double NDeltaOmegaProductionChannel::angularSlope = 6.; 49 const G4int NDeltaOmegaProductionChannel::maxTries = 100000; 50 51 NDeltaOmegaProductionChannel::NDeltaOmegaProductionChannel(Particle *p1,Particle *p2) 52 : particle1(p1), particle2(p2) 53 {} 54 55 NDeltaOmegaProductionChannel::~NDeltaOmegaProductionChannel() {} 56 57 G4double NDeltaOmegaProductionChannel::sampleDeltaMass(G4double ecmorigin) { 58 const G4double ecm = ecmorigin - 783.437; // 783.437 MeV translation to open pion(delta) production in NNOmega 59 const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0; 60 const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth); 61 const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm; 62 // assert(deltaMassRndmRange>0.); 63 64 G4double y=ecm*ecm; 65 G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2 66 G4double q3=std::pow(std::sqrt(q2), 3.); 67 const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3 68 G4double x; 69 70 G4int nTries = 0; 71 G4bool success = false; 72 while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */ 73 if(++nTries >= maxTries) { 74 INCL_WARN("NDeltaOmegaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass " 75 << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n'); 76 return ParticleTable::minDeltaMass; 77 } 78 79 G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange; 80 y = std::tan(rndm); 81 x = ParticleTable::effectiveDeltaMass + 0.5*ParticleTable::effectiveDeltaWidth*y; 82 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0); 83 84 // generation of the delta mass with the penetration factor 85 // (see prc56(1997)2431) 86 y=x*x; 87 q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2 88 q3=std::pow(std::sqrt(q2), 3.); 89 const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3 90 rndm = Random::shoot(); 91 if (rndm*f3max < f3) 92 success = true; 93 } 94 return x; 95 } 96 97 void NDeltaOmegaProductionChannel::fillFinalState(FinalState *fs) { 98 99 /** 100 * 101 * Unlike NN -> NDelta, NN -> NDeltaOmega is drawn from a phase-space generator 102 * 103 **/ 104 105 G4int is1=ParticleTable::getIsospin(particle1->getType()); 106 G4int is2=ParticleTable::getIsospin(particle2->getType()); 107 108 ParticleList list; 109 list.push_back(particle1); 110 list.push_back(particle2); 111 112 // isospin Repartition of N and Delta; 113 G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2); 114 const G4int isospin = is1+is2; 115 116 G4double rndm = 0.0; 117 G4double xmdel = sampleDeltaMass(ecm); 118 119 G4int index2=0; 120 if (isospin == 0) { // pn case 121 rndm = Random::shoot(); 122 if (rndm < 0.5) index2=1; 123 } 124 125 if (isospin == 0) { 126 if(index2 == 1) { 127 G4int isi=is1; 128 is1=is2; 129 is2=isi; 130 } 131 // particle1->setHelicity(0.0); 132 } else { 133 rndm = Random::shoot(); 134 if (rndm >= 0.25) { 135 is1=3*is1; 136 is2=-is2; 137 } 138 // particle1->setHelicity(ctet*ctet); 139 } 140 141 if(is1 == ParticleTable::getIsospin(DeltaMinus)) { 142 particle1->setType(DeltaMinus); 143 } else if(is1 == ParticleTable::getIsospin(DeltaZero)) { 144 particle1->setType(DeltaZero); 145 } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) { 146 particle1->setType(DeltaPlus); 147 } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) { 148 particle1->setType(DeltaPlusPlus); 149 } 150 151 if(is2 == ParticleTable::getIsospin(Proton)) { 152 particle2->setType(Proton); 153 } else if(is2 == ParticleTable::getIsospin(Neutron)) { 154 particle2->setType(Neutron); 155 } 156 157 if(particle1->isDelta()) particle1->setMass(xmdel); 158 if(particle2->isDelta()) particle2->setMass(xmdel); 159 160 const ThreeVector &rcolnucleon1 = particle1->getPosition(); 161 const ThreeVector &rcolnucleon2 = particle2->getPosition(); 162 const ThreeVector rcol = (rcolnucleon1+rcolnucleon2)*0.5; 163 const ThreeVector zero; 164 Particle *omega = new Particle(Omega,zero,rcol); 165 list.push_back(omega); 166 fs->addCreatedParticle(omega); 167 168 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2); 169 G4int biasIndex = ((Random::shoot()<0.5) ? 0 : 1); 170 PhaseSpaceGenerator::generateBiased(sqrtS, list, biasIndex, angularSlope); 171 172 const ThreeVector vz(0.0,0.0,1.0); 173 G4double ctet=(particle1->getMomentum().dot(vz))/particle1->getMomentum().mag(); 174 if (isospin == 0) 175 particle1->setHelicity(0.0); 176 else 177 particle1->setHelicity(ctet*ctet); 178 179 fs->addModifiedParticle(particle1); 180 fs->addModifiedParticle(particle2); 181 182 } 183 184 } 185