Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLNDeltaOmegaProductionChannel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLNDeltaOmegaProductionChannel.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLBinaryCollisionAvatar.hh"
 41 #include "G4INCLRandom.hh"
 42 #include "G4INCLGlobals.hh"
 43 #include "G4INCLLogger.hh"
 44 #include "G4INCLPhaseSpaceGenerator.hh"
 45 
 46 namespace G4INCL {
 47 
 48   const G4double NDeltaOmegaProductionChannel::angularSlope = 6.;
 49   const G4int NDeltaOmegaProductionChannel::maxTries = 100000;
 50 
 51   NDeltaOmegaProductionChannel::NDeltaOmegaProductionChannel(Particle *p1,Particle *p2)
 52     : particle1(p1), particle2(p2)
 53   {}
 54 
 55   NDeltaOmegaProductionChannel::~NDeltaOmegaProductionChannel() {}
 56 
 57   G4double NDeltaOmegaProductionChannel::sampleDeltaMass(G4double ecmorigin) {
 58     const G4double ecm = ecmorigin - 783.437; // 783.437 MeV translation to open pion(delta) production in NNOmega
 59     const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0;
 60     const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
 61     const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
 62 // assert(deltaMassRndmRange>0.);
 63 
 64     G4double y=ecm*ecm;
 65     G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
 66     G4double q3=std::pow(std::sqrt(q2), 3.);
 67     const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
 68     G4double x;
 69 
 70     G4int nTries = 0;
 71     G4bool success = false;
 72     while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
 73       if(++nTries >= maxTries) {
 74         INCL_WARN("NDeltaOmegaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
 75                   << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
 76         return ParticleTable::minDeltaMass;
 77       }
 78 
 79       G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
 80       y = std::tan(rndm);
 81       x = ParticleTable::effectiveDeltaMass + 0.5*ParticleTable::effectiveDeltaWidth*y;
 82 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0);
 83 
 84       // generation of the delta mass with the penetration factor
 85       // (see prc56(1997)2431)
 86       y=x*x;
 87       q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
 88       q3=std::pow(std::sqrt(q2), 3.);
 89       const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
 90       rndm = Random::shoot();
 91       if (rndm*f3max < f3)
 92         success = true;
 93     }
 94     return x;
 95   }
 96 
 97  void NDeltaOmegaProductionChannel::fillFinalState(FinalState *fs) {
 98   
 99 /**
100 *
101 * Unlike NN -> NDelta, NN -> NDeltaOmega is drawn from a phase-space generator
102 *
103 **/
104 
105   G4int is1=ParticleTable::getIsospin(particle1->getType());
106   G4int is2=ParticleTable::getIsospin(particle2->getType());
107   
108   ParticleList list;
109   list.push_back(particle1);
110   list.push_back(particle2);
111   
112 //  isospin Repartition of N and Delta;
113   G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);  
114   const G4int isospin = is1+is2;
115   
116   G4double rndm = 0.0;
117   G4double xmdel = sampleDeltaMass(ecm);
118 
119   G4int index2=0;
120   if (isospin == 0) { // pn case
121    rndm = Random::shoot();
122    if (rndm < 0.5) index2=1;
123   }
124 
125   if (isospin == 0) {
126    if(index2 == 1) {
127     G4int isi=is1;
128     is1=is2;
129     is2=isi;
130    }
131 //   particle1->setHelicity(0.0);
132   } else {
133    rndm = Random::shoot();
134    if (rndm >= 0.25) {
135     is1=3*is1;
136     is2=-is2;
137    }
138 //   particle1->setHelicity(ctet*ctet);
139   }
140   
141   if(is1 == ParticleTable::getIsospin(DeltaMinus)) {
142    particle1->setType(DeltaMinus);
143   } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
144    particle1->setType(DeltaZero);
145   } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
146    particle1->setType(DeltaPlus);
147   } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
148    particle1->setType(DeltaPlusPlus);
149   }
150   
151   if(is2 == ParticleTable::getIsospin(Proton)) {
152    particle2->setType(Proton);
153   } else if(is2 == ParticleTable::getIsospin(Neutron)) {
154    particle2->setType(Neutron);
155   }
156   
157   if(particle1->isDelta()) particle1->setMass(xmdel);
158   if(particle2->isDelta()) particle2->setMass(xmdel);
159   
160   const ThreeVector &rcolnucleon1 = particle1->getPosition();
161   const ThreeVector &rcolnucleon2 = particle2->getPosition();
162   const ThreeVector rcol = (rcolnucleon1+rcolnucleon2)*0.5;
163   const ThreeVector zero;
164   Particle *omega = new Particle(Omega,zero,rcol);
165   list.push_back(omega);
166   fs->addCreatedParticle(omega);
167   
168   const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
169   G4int biasIndex = ((Random::shoot()<0.5) ? 0 : 1);
170   PhaseSpaceGenerator::generateBiased(sqrtS, list, biasIndex, angularSlope);
171   
172   const ThreeVector vz(0.0,0.0,1.0);
173   G4double ctet=(particle1->getMomentum().dot(vz))/particle1->getMomentum().mag();
174   if (isospin == 0)
175    particle1->setHelicity(0.0);
176   else
177    particle1->setHelicity(ctet*ctet);
178   
179   fs->addModifiedParticle(particle1);
180   fs->addModifiedParticle(particle2);
181   
182  }
183  
184 }
185