Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // INCL++ intra-nuclear cascade model 27 // Alain Boudard, CEA-Saclay, France 28 // Joseph Cugnon, University of Liege, Belgium 29 // Jean-Christophe David, CEA-Saclay, France 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland 31 // Sylvie Leray, CEA-Saclay, France 32 // Davide Mancusi, CEA-Saclay, France 33 // 34 #define INCLXX_IN_GEANT4_MODE 1 35 36 #include "globals.hh" 37 38 #include "G4INCLEtaNToPiNChannel.hh" 39 #include "G4INCLKinematicsUtils.hh" 40 #include "G4INCLBinaryCollisionAvatar.hh" 41 #include "G4INCLRandom.hh" 42 #include "G4INCLGlobals.hh" 43 #include "G4INCLLogger.hh" 44 45 namespace G4INCL { 46 47 EtaNToPiNChannel::EtaNToPiNChannel(Particle *p1, Particle *p2) 48 : particle1(p1), particle2(p2) 49 { 50 51 } 52 53 EtaNToPiNChannel::~EtaNToPiNChannel(){ 54 55 } 56 57 void EtaNToPiNChannel::fillFinalState(FinalState *fs) { 58 Particle * nucleon; 59 Particle * eta; 60 if(particle1->isNucleon()) { 61 nucleon = particle1; 62 eta = particle2; 63 } else { 64 nucleon = particle2; 65 eta = particle1; 66 } 67 68 G4double plab=KinematicsUtils::momentumInLab(particle1, particle2); 69 70 const G4double r2 = Random::shoot(); 71 if (nucleon->getType() == Neutron) { 72 if (r2*3. < 2.) { 73 nucleon->setType(Proton); 74 eta->setType(PiMinus); 75 } 76 else { 77 nucleon->setType(Neutron); 78 eta->setType(PiZero); 79 } 80 } 81 else { 82 if (r2*3. < 2.) { 83 nucleon->setType(Neutron); 84 eta->setType(PiPlus); 85 } 86 else { 87 nucleon->setType(Proton); 88 eta->setType(PiZero); 89 } 90 } 91 92 G4double sh=nucleon->getEnergy()+eta->getEnergy(); 93 G4double mn=nucleon->getMass(); 94 G4double me=eta->getMass(); 95 G4double en=(sh*sh+mn*mn-me*me)/(2*sh); 96 nucleon->setEnergy(en); 97 G4double ee=std::sqrt(en*en-mn*mn+me*me); 98 eta->setEnergy(ee); 99 G4double pn=std::sqrt(en*en-mn*mn); 100 101 const G4double pi=std::acos(-1.0); 102 G4double x1; 103 G4double u1; 104 G4double fteta; 105 G4double teta; 106 G4double fi; 107 108 G4double a0; 109 G4double a1; 110 G4double a2; 111 G4double a3; 112 G4double a4; 113 G4double a5; 114 G4double a6; 115 116 if (plab > 1400.) plab=1400.; // no information on angular distributions above plab=1400 MeV 117 G4double p6=std::pow(plab, 6); 118 G4double p5=std::pow(plab, 5); 119 G4double p4=std::pow(plab, 4); 120 G4double p3=std::pow(plab, 3); 121 G4double p2=std::pow(plab, 2); 122 G4double p1=plab; 123 124 // a6 125 if (plab <= 600.) { 126 a6=5.721872E-18*p6 - 1.063594E-14*p5 + 127 7.812226E-12*p4 - 2.947343E-09*p3 + 128 5.955500E-07*p2 - 6.081534E-05*p1 + 2.418893E-03; 129 } 130 else { 131 a6=1.549323E-18*p6 - 9.570613E-15*p5 + 132 2.428560E-11*p4 - 3.237490E-08*p3 + 133 2.385312E-05*p2 - 9.167580E-03*p1 + 1.426952E+00; 134 } 135 // a5 136 if (plab <= 700.) { 137 a5=-3.858406E-16*p6 + 7.397533E-13*p5 - 138 5.344420E-10*p4 + 1.865842E-07*p3 - 139 3.234292E-05*p2 + 2.552380E-03*p1 - 6.810842E-02; 140 } 141 else { 142 a5=-3.775268E-17*p6 + 2.445059E-13*p5 - 143 6.503137E-10*p4 + 9.065678E-07*p3 - 144 6.953576E-04*p2 + 2.757524E-01*p1 - 4.328028E+01; 145 } 146 // a4 147 if (plab <= 550.) { 148 a4=-2.051840E-16*p6 + 3.858551E-13*p5 - 149 3.166229E-10*p4 + 1.353545E-07*p3 - 150 2.631251E-05*p2 + 2.109593E-03*p1 - 5.633076E-02; 151 } 152 else if (plab <= 650.) { 153 a4=-1.698136E-05*p2 + 1.827203E-02*p1 - 4.482122E+00; 154 } 155 else { 156 a4=-2.808337E-17*p6 + 1.640033E-13*p5 - 157 3.820460E-10*p4 + 4.452787E-07*p3 - 158 2.621981E-04*p2 + 6.530743E-02*p1 - 2.447717E+00; 159 } 160 // a3 161 if (plab <= 700.) { 162 a3=7.061866E-16*p6 - 1.356389E-12*p5 + 163 9.783322E-10*p4 - 3.407333E-07*p3 + 164 5.903545E-05*p2 - 4.735559E-03*p1 + 1.270435E-01; 165 } 166 else { 167 a3=1.138088E-16*p6 - 7.459580E-13*p5 + 168 2.015156E-09*p4 - 2.867416E-06*p3 + 169 2.261028E-03*p2 - 9.323442E-01*p1 + 1.552846E+02; 170 } 171 // a2 172 if (plab <= 550.) { 173 a2=1.352952E-17*p6 - 3.030435E-13*p5 + 174 4.624668E-10*p4 - 2.759605E-07*p3 + 175 6.996373E-05*p2 - 4.745692E-03*p1 + 1.524349E-01; 176 } 177 else if (plab <= 700.) { 178 a2=5.514651E-08*p3 - 8.734112E-05*p2 + 4.108704E-02*p1 - 5.116601E+00; 179 } 180 else { 181 a2=5.621795E-17*p6 - 3.701960E-13*p5 + 182 1.005796E-09*p4 - 1.441294E-06*p3 + 183 1.146234E-03*p2 - 4.775194E-01*p1 + 8.084776E+01; 184 } 185 // a1 186 if (plab <= 500.) { 187 a1=-2.425827E-16*p6 + 4.113350E-13*p5 - 188 2.342298E-10*p4 + 4.934322E-08*p3 - 189 3.564530E-06*p2 + 6.516398E-04*p1 + 2.547230E-01; 190 } 191 else if (plab <= 700.) { 192 a1=-1.824213E-10*p4 + 3.599251E-07*p3 - 193 2.480862E-04*p2 + 6.894931E-02*p1 - 5.760562E+00; 194 } 195 else { 196 a1=-5.139366E-17*p6 + 3.408224E-13*p5 - 197 9.341903E-10*p4 + 1.354028E-06*p3 - 198 1.093509E-03*p2 + 4.653326E-01*p1 - 8.068436E+01; 199 } 200 // a0 201 if (plab <= 400.) { 202 a0=1.160837E-13*p6 - 1.813002E-10*p5 + 203 1.155391E-07*p4 - 3.862737E-05*p3 + 204 7.230513E-03*p2 - 7.469799E-01*p1 + 3.830064E+01; 205 } 206 else if (plab <= 700.) { 207 a0=2.267918E-14*p6 - 7.593899E-11*p5 + 208 1.049849E-07*p4 - 7.669301E-05*p3 + 209 3.123846E-02*p2 - 6.737221E+00*p1 + 6.032010E+02; 210 } 211 else { 212 a0=-1.851188E-17*p6 + 1.281122E-13*p5 - 213 3.686161E-10*p4 + 5.644116E-07*p3 - 214 4.845757E-04*p2 + 2.203918E-01*p1 - 4.100383E+01; 215 } 216 217 G4double interg1=2.*(a6/7. + a4/5. + a2/3. + a0); // (integral to normalize) 218 G4double f1=(a6+a5+a4+a3+a2+a1+a0)/interg1; // (Max normalized) 219 220 G4int passe1=0; 221 while (passe1==0) { 222 // Sample x from -1 to 1 223 x1=Random::shoot(); 224 if (Random::shoot() > 0.5) x1=-x1; 225 226 // Sample u from 0 to 1 227 u1=Random::shoot(); 228 fteta=(a6*x1*x1*x1*x1*x1*x1+a5*x1*x1*x1*x1*x1+a4*x1*x1*x1*x1+a3*x1*x1*x1+a2*x1*x1+a1*x1+a0)/interg1; 229 // The condition 230 if (u1*f1 < fteta) { 231 teta=std::acos(x1); 232 // std::cout << x1 << " " << fteta << " "<< f1/interg1 << " " << u1 << " " << interg1 << std::endl; 233 passe1=1; 234 } 235 } 236 237 fi=(2.0*pi)*Random::shoot(); 238 239 ThreeVector mom_nucleon( 240 pn*std::sin(teta)*std::cos(fi), 241 pn*std::sin(teta)*std::sin(fi), 242 pn*std::cos(teta) 243 ); 244 // end real distribution 245 246 nucleon->setMomentum(-mom_nucleon); 247 eta->setMomentum(mom_nucleon); 248 249 fs->addModifiedParticle(nucleon); 250 fs->addModifiedParticle(eta); 251 } 252 253 } 254