Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/inclxx/incl_physics/src/G4INCLCrossSectionsMultiPions.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // INCL++ intra-nuclear cascade model
 27 // Alain Boudard, CEA-Saclay, France
 28 // Joseph Cugnon, University of Liege, Belgium
 29 // Jean-Christophe David, CEA-Saclay, France
 30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
 31 // Sylvie Leray, CEA-Saclay, France
 32 // Davide Mancusi, CEA-Saclay, France
 33 //
 34 #define INCLXX_IN_GEANT4_MODE 1
 35 
 36 #include "globals.hh"
 37 
 38 #include "G4INCLCrossSectionsMultiPions.hh"
 39 #include "G4INCLKinematicsUtils.hh"
 40 #include "G4INCLParticleTable.hh"
 41 #include "G4INCLLogger.hh"
 42 // #include <cassert>
 43 
 44 namespace G4INCL {
 45 
 46   template<G4int N>
 47     struct BystrickyEvaluator {
 48       static G4double eval(const G4double pLab, const G4double oneOverThreshold, HornerCoefficients<N> const &coeffs) {
 49         const G4double pMeV = pLab*1E3;
 50         const G4double ekin=std::sqrt(ParticleTable::effectiveNucleonMass2+pMeV*pMeV)-ParticleTable::effectiveNucleonMass;
 51         const G4double xrat=ekin*oneOverThreshold;
 52         const G4double x=std::log(xrat);
 53         return HornerEvaluator<N>::eval(x, coeffs) * x * std::exp(-0.5*x);
 54       }
 55     };
 56 
 57   const G4int CrossSectionsMultiPions::nMaxPiNN = 4;
 58   const G4int CrossSectionsMultiPions::nMaxPiPiN = 4;
 59 
 60   const G4double CrossSectionsMultiPions::s11pzOOT = 0.0035761542037692665889;
 61   const G4double CrossSectionsMultiPions::s01ppOOT = 0.003421025623481919853;
 62   const G4double CrossSectionsMultiPions::s01pzOOT = 0.0035739814152966403123;
 63   const G4double CrossSectionsMultiPions::s11pmOOT = 0.0034855350296270480281;
 64   const G4double CrossSectionsMultiPions::s12pmOOT = 0.0016672224074691565119;
 65   const G4double CrossSectionsMultiPions::s12ppOOT = 0.0016507643038726931312;
 66   const G4double CrossSectionsMultiPions::s12zzOOT = 0.0011111111111111111111;
 67   const G4double CrossSectionsMultiPions::s02pzOOT = 0.00125;
 68   const G4double CrossSectionsMultiPions::s02pmOOT = 0.0016661112962345883443;
 69   const G4double CrossSectionsMultiPions::s12mzOOT = 0.0017047391749062392793;
 70 
 71   CrossSectionsMultiPions::CrossSectionsMultiPions() :
 72     s11pzHC(-2.228000000000294018,8.7560000000005723725,-0.61000000000023239325,-5.4139999999999780324,3.3338333333333348023,-0.75835000000000022049,0.060623611111111114688),
 73     s01ppHC(2.0570000000126518344,-6.029000000012135826,36.768500000002462784,-45.275666666666553533,25.112666666666611953,-7.2174166666666639187,1.0478875000000000275,-0.060804365079365080846),
 74     s01pzHC(0.18030000000000441851,7.8700999999999953598,-4.0548999999999990425,0.555199999999999959),
 75     s11pmHC(0.20590000000000031866,3.3450999999999993936,-1.4401999999999997825,0.17076666666666664973),
 76     s12pmHC(-0.77235999999999901328,4.2626599999999991117,-1.9008899999999997323,0.30192266666666663379,-0.012270833333333331986),
 77     s12ppHC(-0.75724999999999975664,2.0934399999999998565,-0.3803099999999999814),
 78     s12zzHC(-0.89599999999996965072,7.882999999999978632,-7.1049999999999961928,1.884333333333333089),
 79     s02pzHC(-1.0579999999999967036,11.113999999999994089,-8.5259999999999990196,2.0051666666666666525),
 80     s02pmHC(2.4009000000012553286,-7.7680000000013376183,20.619000000000433505,-16.429666666666723928,5.2525708333333363472,-0.58969166666666670206),
 81     s12mzHC(-0.21858699999999976269,1.9148999999999999722,-0.31727500000000001065,-0.027695000000000000486)
 82   {
 83   }
 84 
 85   G4double CrossSectionsMultiPions::NNElastic(Particle const * const part1, Particle const * const part2) {
 86 
 87     /* The NN cross section is parametrised as a function of the lab momentum
 88      * of one of the nucleons. For NDelta or DeltaDelta, the physical
 89      * assumption is that the cross section is the same as NN *for the same
 90      * total CM energy*. Thus, we calculate s from the particles involved, and
 91      * we convert this value to the lab momentum of a nucleon *as if this were
 92      * an NN collision*.
 93      */
 94     const G4double s = KinematicsUtils::squareTotalEnergyInCM(part1, part2);
 95 
 96     if(part1->isNucleon() && part2->isNucleon()) {  // NN
 97       const G4int i = ParticleTable::getIsospin(part1->getType())
 98         + ParticleTable::getIsospin(part2->getType());
 99       return NNElasticFixed(s, i);
100     }
101     else {  // Nucleon-Delta and Delta-Delta
102       const G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
103       if (plab < 0.440) {
104         return 34.*std::pow(plab/0.4, (-2.104));
105       }
106       else if (plab < 0.800) {
107         return 23.5+1000.*std::pow(plab-0.7, 4);
108       }
109       else if (plab <= 2.0) {
110         return 1250./(50.+plab)-4.*std::pow(plab-1.3, 2);
111       }
112       else {
113         return 77./(plab+1.5);
114       }
115     }
116   }
117 
118     G4double CrossSectionsMultiPions::NNElasticFixed(const G4double s, const G4int i) {
119 
120       /* From NNElastic, with isospin fixed and for NN only.
121       */
122 
123       G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
124       G4double sigma = 0.;
125 
126       if (i == 0) {  // pn
127         if (plab < 0.446) {
128           G4double alp=std::log(plab);
129           sigma = 6.3555*std::exp(-3.2481*alp-0.377*alp*alp);
130         }
131         else if (plab < 0.851) {
132           sigma = 33.+196.*std::pow(std::fabs(plab-0.95),2.5);
133         }
134         else if (plab <= 2.0) {
135           sigma = 31./std::sqrt(plab);
136         }
137         else {
138           sigma = 77./(plab+1.5);
139         }
140         //if(plab < 0.9 && plab > 0.802) sigma -= 0.1387*std::exp(-std::pow((plab-0.861),2)/0.0006861); //correction if totalcx-sumcx < 0.1
141         //if(plab < 1.4 && plab > 1.31) sigma -= 0.1088*std::exp(-std::pow((plab-1.35),2)/0.00141); //correction if totalcx-sumcx < 0.1
142         return sigma;
143       }
144       else {  // pp and nn
145         if (plab < 0.440) {
146           return 34.*std::pow(plab/0.4, (-2.104));
147         }
148         else if (plab < 0.8067) {
149           return 23.5+1000.*std::pow(plab-0.7, 4);
150         }
151         else if (plab <= 2.0) {
152           return 1250./(50.+plab)-4.*std::pow(plab-1.3, 2);
153         }
154         else if (plab <= 3.0956) {
155           return 77./(plab+1.5);
156         }
157         else {
158           G4double alp=std::log(plab);
159           return 11.2+25.5*std::pow(plab, -1.12)+0.151*std::pow(alp, 2)-1.62*alp;
160         }
161       }
162     }
163 
164     G4double CrossSectionsMultiPions::NNTot(Particle const * const part1, Particle const * const part2) {
165 
166         G4int i = ParticleTable::getIsospin(part1->getType())
167         + ParticleTable::getIsospin(part2->getType());
168 
169         if(part1->isNucleon() && part2->isNucleon()) {  // NN
170           const G4double s = KinematicsUtils::squareTotalEnergyInCM(part1, part2);
171           return NNTotFixed(s, i);
172         }
173         else if (part1->isDelta() && part2->isDelta()) {  // Delta-Delta
174             return elastic(part1, part2);
175         }
176         else {  // Nucleon-Delta
177             return NDeltaToNN(part1, part2) + elastic(part1, part2);
178         }
179     }
180 
181     G4double CrossSectionsMultiPions::NNTotFixed(const G4double s, const G4int i) {
182 
183       /* From NNTot, with isospin fixed and for NN only.
184       */
185 
186       G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
187 
188       if (i == 0) {  // pn
189         if (plab < 0.446) {
190           G4double alp=std::log(plab);
191           return 6.3555*std::exp(-3.2481*alp-0.377*std::pow(alp, 2));
192         }
193         else if (plab < 1.0) {
194           return 33.+196.*std::sqrt(std::pow(std::fabs(plab-0.95),5));
195         }
196         else if (plab < 1.924) {
197           return 24.2+8.9*plab;
198         }
199         else {
200           G4double alp=std::log(plab);
201           return 48.9-33.7*std::pow(plab, -3.08)+0.619*std::pow(alp, 2)-5.12*alp;
202         }
203       }
204       else {  // pp and nn
205         if (plab < 0.440) {
206           return 34.*std::pow(plab/0.4, (-2.104));
207         }
208         else if (plab < 0.8734) {
209           return 23.5+1000.*std::pow(plab-0.7, 4);
210         }
211         else if (plab < 1.5) {
212           return 23.5+24.6/(1.+std::exp(-10.*(plab-1.2)));
213         }
214         else if (plab < 3.0044) {
215           return 41.+60.*(plab-0.9)*std::exp(-1.2*plab);
216         }
217         else {
218           G4double alp=std::log(plab);
219           return 45.6+219.*std::pow(plab, -4.23)+0.41*std::pow(alp, 2)-3.41*alp;
220         }
221       }
222     }
223 
224     G4double CrossSectionsMultiPions::NNInelasticIso(const G4double ener, const G4int iso) {
225 
226       const G4double s = ener*ener;
227       G4double sincl;
228 
229       if (iso != 0) {
230         if(s>=4074595.287720512986) { // plab>800 MeV/c
231           sincl = NNTotFixed(s, 2)-NNElasticFixed(s, 2);
232         }
233         else {
234           sincl =  0. ;
235         }
236       } else {
237         if(s>=4074595.287720512986) { // plab>800 MeV/c
238           sincl = 2*(NNTotFixed(s, 0)-NNElasticFixed(s, 0))-(NNTotFixed(s, 2)-NNElasticFixed(s, 2));
239         }
240         else {
241           return 0. ;
242         }
243       }
244       if (sincl < 0.) sincl = 0.;
245       return sincl;
246     }
247 
248     G4double CrossSectionsMultiPions::NNOnePiOrDelta(const G4double ener, const G4int iso, const G4double xsiso) {
249 
250         /* Article J. Physique 48 (1987)1901-1924 "Energy dependence of
251          nucleon-cucleon inelastic total cross-sections."
252          J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk & P. Winternitz
253          S11PZ= section pp->pp pi0
254          S01PP= section pp->pn pi+
255          S01PZ= section pn->pn pi0
256          S11PM= section pn->pp pi-
257          S= X-Section, 1st number : 1 if pp and 0 if pn
258          2nd number = number of pions, PP= pi+; PZ= pi0 ; PM= pi-
259          */
260 
261         const G4double s = ener*ener;
262         G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
263 
264         G4double snnpit1=0.;
265         G4double snnpit=0.;
266         G4double s11pz=0.;
267         G4double s01pp=0.;
268         G4double s01pz=0.;
269         G4double s11pm=0.;
270 
271         if ((iso != 0) && (plab < 2.1989)) {
272             snnpit = xsiso - NNTwoPi(ener, iso, xsiso);
273             if (snnpit < 1.e-8) snnpit=0.;
274             return snnpit;
275         }
276         else if ((iso == 0) && (plab < 1.7369)) {
277             snnpit = xsiso;
278             if (snnpit < 1.e-8) snnpit=0.;
279             return snnpit;
280         }
281 
282 //s11pz
283         if (plab > 18.) {
284             s11pz=55.185/std::pow((0.1412*plab+5),2);
285         }
286         else if (plab > 13.9) {
287             G4double alp=std::log(plab);
288             s11pz=6.67-13.3*std::pow(plab, -6.18)+0.456*alp*alp-3.29*alp;
289         }
290         else if (plab >= 0.7765) {
291             const G4double b=BystrickyEvaluator<7>::eval(plab,s11pzOOT,s11pzHC);
292             s11pz=b*b;
293         }
294 //s01pp
295         if (plab >= 0.79624) {
296             const G4double b=BystrickyEvaluator<8>::eval(plab,s01ppOOT,s01ppHC);
297             s01pp=b*b;
298         }
299 
300 // channel T=1
301         snnpit1=s11pz+s01pp;
302         if (snnpit1 < 1.e-8) snnpit1=0.;
303         if (iso != 0) {
304             return snnpit1;
305         }
306 
307 //s01pz
308         if (plab > 4.5) {
309             s01pz=15289.4/std::pow((11.573*plab+5),2);
310         }
311         else if (plab >= 0.777) {
312             const G4double b=BystrickyEvaluator<4>::eval(plab,s01pzOOT,s01pzHC);
313             s01pz=b*b;
314         }
315 //s11pm
316         if (plab > 14.) {
317             s11pm=46.68/std::pow((0.2231*plab+5),2);
318         }
319         else if (plab >= 0.788) {
320             const G4double b=BystrickyEvaluator<4>::eval(plab,s11pmOOT,s11pmHC);
321             s11pm=b*b;
322         }
323 
324 // channel T=0
325 //        snnpit=s01pz+2*s11pm-snnpit1; //modif 2*(s01pz+2*s11pm)-snnpit1;
326         snnpit = 2*(s01pz+2*s11pm)-snnpit1;
327         if (snnpit < 1.e-8) snnpit=0.;
328         return snnpit;
329     }
330 
331     G4double CrossSectionsMultiPions::NNTwoPi(const G4double ener, const G4int iso, const G4double xsiso) {
332 
333         /* Article J. Physique 48 (1987)1901-1924 "Energy dependence of nucleon-cucleon inelastic total cross-sections."
334            J. Bystricky, P. La France, F. Lehar, F. Perrot, T. Siemiarczuk & P. Winternitz
335            S12PM : pp -> pp Pi+ Pi-
336            S12ZZ : pp -> pp Pi0 Pi0
337            S12PP : pp -> nn Pi+ Pi+
338            S02PZ : pp -> pn Pi+ Pi0
339            S02PM : pn -> pn Pi+ Pi-
340            S12MZ : pn -> pp Pi- Pi0
341         */
342 
343         const G4double s = ener*ener;
344         G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
345 
346         G4double snn2pit=0.;
347         G4double s12pm=0.;
348         G4double s12pp=0.;
349         G4double s12zz=0.;
350         G4double s02pz=0.;
351         G4double s02pm=0.;
352         G4double s12mz=0.;
353 
354         if (iso==0 && plab<3.33) {
355             snn2pit = xsiso - NNOnePiOrDelta(ener, iso, xsiso);
356             if (snn2pit < 1.e-8) snn2pit=0.;
357             return snn2pit;
358         }
359 
360         if (iso != 0) {
361 //s12pm
362          if (plab > 15.) {
363             s12pm=25.977/plab;
364          }
365          else if (plab >= 1.3817) {
366             const G4double b=BystrickyEvaluator<5>::eval(plab,s12pmOOT,s12pmHC);
367             s12pm=b*b;
368          }
369 //s12pp
370          if (plab > 10.) {
371             s12pp=141.505/std::pow((-0.1016*plab-7),2);
372          }
373          else if (plab >= 1.5739) {
374             const G4double b=BystrickyEvaluator<3>::eval(plab,s12ppOOT,s12ppHC);
375             s12pp=b*b;
376          }
377         }
378 //s12zz
379         if (plab > 4.) {
380             s12zz=97.355/std::pow((1.1579*plab+5),2);
381         }
382         else if (plab >= 1.72207) {
383             const G4double b=BystrickyEvaluator<4>::eval(plab,s12zzOOT,s12zzHC);
384             s12zz=b*b;
385         }
386 //s02pz
387         if (plab > 4.5) {
388             s02pz=178.082/std::pow((0.2014*plab+5),2);
389         }
390         else if (plab >= 1.5656) {
391             const G4double b=BystrickyEvaluator<4>::eval(plab,s02pzOOT,s02pzHC);
392             s02pz=b*b;
393         }
394 
395 // channel T=1
396         if (iso != 0) {
397             snn2pit=s12pm+s12pp+s12zz+s02pz;
398             if (snn2pit < 1.e-8) snn2pit=0.;
399             return snn2pit;
400         }
401 
402 //s02pm
403         if (plab > 5.) {
404             s02pm=135.826/std::pow(plab,2);
405         }
406         else if (plab >= 1.21925) {
407             const G4double b=BystrickyEvaluator<6>::eval(plab,s02pmOOT,s02pmHC);
408             s02pm=b*b;
409         }
410 //s12mz
411         if (plab >= 1.29269) {
412             const G4double b=BystrickyEvaluator<4>::eval(plab,s12mzOOT,s12mzHC);
413             s12mz=b*b;
414         }
415 
416 // channel T=0
417 //        snn2pit=3*(0.5*s02pm+0.5*s12mz-0.5*s02pz-s12zz);  //modif snn2pit=3*(s02pm+0.5*s12mz-0.5*s02pz-s12zz);
418         snn2pit=3*(s02pm+0.5*s12mz-0.5*s02pz-s12zz);
419         if (snn2pit < 1.e-8) snn2pit=0.;
420         return snn2pit;
421     }
422 
423     G4double CrossSectionsMultiPions::NNThreePi(const G4double ener, const G4int iso, const G4double xsiso, const G4double xs1pi, const G4double xs2pi) {
424 
425         const G4double s = ener*ener;
426         G4double plab = 0.001*KinematicsUtils::momentumInLab(s, ParticleTable::effectiveNucleonMass, ParticleTable::effectiveNucleonMass);
427 
428         G4double snn3pit=0.;
429 
430         if (iso == 0) {
431 // channel T=0
432             if (plab > 7.2355) {
433                 return 46.72/std::pow((plab - 5.8821),2);
434             }
435             else {
436                 snn3pit=xsiso-xs1pi-xs2pi;
437                 if (snn3pit < 1.e-8) snn3pit=0.;
438                 return snn3pit;
439             }
440         }
441         else {
442 // channel T=1
443             if (plab > 7.206) {
444                 return 5592.92/std::pow((plab+14.9764),2);
445             }
446             else if (plab > 2.1989){
447                 snn3pit=xsiso-xs1pi-xs2pi;
448                 if (snn3pit < 1.e-8) snn3pit=0.;
449                 return snn3pit;
450             }
451             else return snn3pit;
452         }
453     }
454 
455     G4double CrossSectionsMultiPions::NNOnePi(Particle const * const particle1, Particle const * const particle2) {
456         // Cross section for nucleon-nucleon directly producing one pion
457 
458         const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
459         if (iso!=0) // If pp or nn we choose to always pass by the N-N to N-Delta channel
460           return 0.;
461 
462         const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
463 
464         const G4double xsiso2=NNInelasticIso(ener, 2);
465         const G4double xsiso0=NNInelasticIso(ener, 0);
466         return 0.25*(NNOnePiOrDelta(ener, 0, xsiso0)+ NNOnePiOrDelta(ener, 2, xsiso2));
467     }
468 
469     G4double CrossSectionsMultiPions::NNOnePiOrDelta(Particle const * const particle1, Particle const * const particle2) {
470         // Cross section for nucleon-nucleon directly producing one pion or producing a nucleon-delta pair
471         const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
472         const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
473 
474         const G4double xsiso2=NNInelasticIso(ener, 2);
475         if (iso != 0)
476           return NNOnePiOrDelta(ener, iso, xsiso2);
477         else {
478           const G4double xsiso0=NNInelasticIso(ener, 0);
479           return 0.5*(NNOnePiOrDelta(ener, 0, xsiso0)+ NNOnePiOrDelta(ener, 2, xsiso2));
480         }
481     }
482 
483     G4double CrossSectionsMultiPions::NNTwoPi(Particle const * const particle1, Particle const * const particle2) {
484         //
485         //     Nucleon-Nucleon producing one pion cross sections
486         //
487         const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
488         const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
489 
490 
491         const G4double xsiso2=NNInelasticIso(ener, 2);
492         if (iso != 0) {
493             return NNTwoPi(ener, 2, xsiso2);
494         }
495         else {
496             const G4double xsiso0=NNInelasticIso(ener, 0);
497             return 0.5*(NNTwoPi(ener, 0, xsiso0)+ NNTwoPi(ener, 2, xsiso2));
498         }
499         return 0.0; // Should never reach this point
500     }
501 
502     G4double CrossSectionsMultiPions::NNThreePi(Particle const * const particle1, Particle const * const particle2) {
503         //
504         //     Nucleon-Nucleon producing one pion cross sections
505         //
506 
507         const G4double ener=KinematicsUtils::totalEnergyInCM(particle1, particle2);
508         const G4int iso=ParticleTable::getIsospin(particle1->getType()) + ParticleTable::getIsospin(particle2->getType());
509 
510 
511         const G4double xsiso2=NNInelasticIso(ener, 2);
512         const G4double xs1pi2=NNOnePiOrDelta(ener, 2, xsiso2);
513         const G4double xs2pi2=NNTwoPi(ener, 2, xsiso2);
514         if (iso != 0)
515           return NNThreePi(ener, 2, xsiso2, xs1pi2, xs2pi2);
516         else {
517           const G4double xsiso0=NNInelasticIso(ener, 0);
518           const G4double xs1pi0=NNOnePiOrDelta(ener, 0, xsiso0);
519           const G4double xs2pi0=NNTwoPi(ener, 0, xsiso0);
520           return 0.5*(NNThreePi(ener, 0, xsiso0, xs1pi0, xs2pi0)+ NNThreePi(ener, 2, xsiso2, xs1pi2, xs2pi2));
521         }
522     }
523 
524     G4double CrossSectionsMultiPions::NNFourPi(Particle const * const particle1, Particle const * const particle2) {
525       const G4double s = KinematicsUtils::squareTotalEnergyInCM(particle1, particle2);
526       if(s<6.25E6)
527         return 0.;
528       const G4double sigma = NNTot(particle1, particle2) - NNElastic(particle1, particle2) - NNOnePiOrDelta(particle1, particle2) - NNTwoPi(particle1, particle2) - NNThreePi(particle1, particle2);
529       return ((sigma>1.e-9) ? sigma : 0.);
530     }
531 
532     G4double CrossSectionsMultiPions::NNToxPiNN(const G4int xpi, Particle const * const particle1, Particle const * const particle2) {
533       //
534       //     Nucleon-Nucleon producing xpi pions cross sections
535       //
536 // assert(xpi>0 && xpi<=nMaxPiNN);
537 // assert(particle1->isNucleon() && particle2->isNucleon());
538 
539       if (xpi == 1)
540         return NNOnePi(particle1, particle2);
541       else if (xpi == 2)
542         return NNTwoPi(particle1, particle2);
543       else if (xpi == 3)
544         return NNThreePi(particle1, particle2);
545       else if (xpi == 4)
546         return NNFourPi(particle1, particle2);
547       else // should never reach this point
548         return 0.;
549     }
550 
551 
552   G4double CrossSectionsMultiPions::spnPiPlusPHE(const G4double x) {
553     // HE and LE pi- p and pi+ n
554     G4double ramass = 0.0;
555 
556     if(x <= 1306.78) {
557        G4double y = x*x;
558        G4double q2;
559        q2=(y-std::pow(1076.0, 2))*(y-std::pow(800.0, 2))/(4.0*y);
560        if (q2 > 0.) {
561           G4double q3=std::pow(q2, 3./2.);
562           G4double f3=q3/(q3+std::pow(180.0, 3));
563     G4double sdel;
564     sdel=326.5/(std::pow((x-1215.0-ramass)*2.0/110.0,2)+1.0);
565     return sdel*f3*(1.0-5.0*ramass/1215.0);
566        }
567        else {
568           return 0;
569        }
570     }
571     if(x <= 1754.0) {
572       return -2.33730e-06*std::pow(x, 3)+1.13819e-02*std::pow(x,2)
573         -1.83993e+01*x+9893.4;
574     } else if (x <= 2150.0) {
575       return 1.13531e-06*std::pow(x, 3)-6.91694e-03*std::pow(x, 2)
576         +1.39907e+01*x-9360.76;
577     } else {
578       return -3.18087*std::log(x)+52.9784;
579     }
580   }
581 
582   G4double CrossSectionsMultiPions::spnPiMinusPHE(const G4double x) {
583     // HE pi- p and pi+ n
584     G4double ramass = 0.0;
585 
586     if(x <= 1275.8) {
587        G4double y = x*x;
588        G4double q2;
589        q2=(y-std::pow(1076.0, 2))*(y-std::pow(800.0, 2))/(4.0*y);
590        if (q2 > 0.) {
591           G4double q3=std::pow(q2, 3./2.);
592           G4double f3=q3/(q3+std::pow(180.0, 3));
593     G4double sdel;
594     sdel=326.5/(std::pow((x-1215.0-ramass)*2.0/110.0,2)+1.0);
595     return sdel*f3*(1.0-5.0*ramass/1215.0)/3.;
596        }
597        else {
598           return 0;
599        }
600     }
601     if(x <= 1495.0) {
602       return 0.00120683*(x-1372.52)*(x-1372.52)+26.2058;
603     } else if(x <= 1578.0) {
604       return 1.15873e-05*x*x+49965.6/((x-1519.59)*(x-1519.59)+2372.55);
605     } else if(x <= 2028.4) {
606       return 34.0248+43262.2/((x-1681.65)*(x-1681.65)+1689.35);
607     } else if(x <= 7500.0) {
608       return 3.3e-7*(x-7500.0)*(x-7500.0)+24.5;
609     } else {
610       return 24.5;
611     }
612   }
613 
614   G4double CrossSectionsMultiPions::total(Particle const * const p1, Particle const * const p2) {
615     G4double inelastic;
616     if(p1->isNucleon() && p2->isNucleon()) {
617       return NNTot(p1, p2);
618     } else if((p1->isNucleon() && p2->isDelta()) ||
619               (p1->isDelta() && p2->isNucleon())) {
620       inelastic = NDeltaToNN(p1, p2);
621     } else if((p1->isNucleon() && p2->isPion()) ||
622               (p1->isPion() && p2->isNucleon())) {
623       return piNTot(p1,p2);
624     } else {
625       inelastic = 0.;
626     }
627 
628     return inelastic + elastic(p1, p2);
629   }
630 
631 
632   G4double CrossSectionsMultiPions::piNIne(Particle const * const particle1, Particle const * const particle2) {
633     //      piN inelastic cross section (Delta excluded)
634     
635     const Particle *pion;
636     const Particle *nucleon;
637     if(particle1->isNucleon()) {
638       nucleon = particle1;
639       pion = particle2;
640     } else {
641       pion = particle1;
642       nucleon = particle2;
643     }
644 // assert(pion->isPion());
645     
646     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
647     
648     // these limits correspond to sqrt(s)=1230 and 20000 MeV
649     if(pLab>212677. || pLab<296.367)
650       return 0.0;
651     
652     const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
653     const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
654     const G4int cg = 4 + ind2t3*ipit3;
655 // assert(cg==2 || cg==4 || cg==6);
656     
657 //    const G4double p1=1e-3*pLab;
658 //    const G4double p2=std::log(p1);
659     G4double xpipp = 0.0;
660     G4double xpimp = 0.0;
661     
662     if(cg!=2) {
663       // x-section pi+ p inelastique :
664       xpipp=piPluspIne(pion,nucleon);
665       
666       if(cg==6) // cas pi+ p et pi- n
667         return xpipp;
668     }
669     
670     // x-section pi- p inelastique :
671     xpimp=piMinuspIne(pion,nucleon);
672     
673     if(cg==2) // cas pi- p et pi+ n
674       return xpimp;
675     else      // cas pi0 p et pi0 n
676       return 0.5*(xpipp+xpimp);
677   }
678   
679   G4double CrossSectionsMultiPions::piNToDelta(Particle const * const particle1, Particle const * const particle2) {
680     //      piN Delta production
681 
682     G4double x = KinematicsUtils::totalEnergyInCM(particle1, particle2);
683     if(x>20000.) return 0.0; // no cross section above this value
684 
685     G4int ipit3 = 0;
686     G4int ind2t3 = 0;
687     const G4double ramass = 0.0;
688 
689     if(particle1->isPion()) {
690       ipit3 = ParticleTable::getIsospin(particle1->getType());
691       ind2t3 = ParticleTable::getIsospin(particle2->getType());
692     } else if(particle2->isPion()) {
693       ipit3 = ParticleTable::getIsospin(particle2->getType());
694       ind2t3 = ParticleTable::getIsospin(particle1->getType());
695     }
696 
697     const G4double y=x*x;
698     const G4double q2=(y-1076.0*1076.0)*(y-800.0*800.0)/y/4.0;
699     if (q2 <= 0.) {
700       return 0.0;
701     }
702     const G4double q3 = std::pow(std::sqrt(q2),3);
703     const G4double f3 = q3/(q3 + 5832000.); // 5832000 = 180^3
704     G4double sdelResult = 326.5/(std::pow((x-1215.0-ramass)*2.0/(110.0-ramass), 2)+1.0);
705     sdelResult = sdelResult*(1.0-5.0*ramass/1215.0);
706     const G4int cg = 4 + ind2t3*ipit3;
707     sdelResult = sdelResult*f3*cg/6.0;
708 
709     return sdelResult;
710   }
711 
712   G4double CrossSectionsMultiPions::piNTot(Particle const * const particle1, Particle const * const particle2) {
713     //      FUNCTION SPN(X,IND2T3,IPIT3,f17)
714     // SIGMA(PI+ + P) IN THE (3,3) REGION
715     // NEW FIT BY J.VANDERMEULEN  + FIT BY Th AOUST ABOVE (3,3) RES
716     //                              CONST AT LOW AND VERY HIGH ENERGY
717     //      COMMON/BL8/RATHR,RAMASS                                           REL21800
718     //      integer f17
719     // RATHR and RAMASS are always 0.0!!!
720 
721     G4double x = KinematicsUtils::totalEnergyInCM(particle1, particle2);
722 
723     G4int ipit3 = 0;
724     G4int ind2t3 = 0;
725 
726     if(particle1->isPion()) {
727       ipit3 = ParticleTable::getIsospin(particle1->getType());
728       ind2t3 = ParticleTable::getIsospin(particle2->getType());
729     } else if(particle2->isPion()) {
730       ipit3 = ParticleTable::getIsospin(particle2->getType());
731       ind2t3 = ParticleTable::getIsospin(particle1->getType());
732     }
733 
734     G4double spnResult=0.0;
735 
736     // HE pi+ p and pi- n
737       if((ind2t3 == 1 && ipit3 == 2) || (ind2t3 == -1 && ipit3 == -2))
738         spnResult=spnPiPlusPHE(x);
739       else if((ind2t3 == 1 && ipit3 == -2) || (ind2t3 == -1 && ipit3 == 2))
740         spnResult=spnPiMinusPHE(x);
741       else if(ipit3 == 0) spnResult = (spnPiPlusPHE(x) + spnPiMinusPHE(x))/2.0; // (spnpipphe(x)+spnpimphe(x))/2.0
742       else {
743         INCL_ERROR("Unknown configuration!\n" << particle1->print() << particle2->print() << '\n');
744       }
745 
746     return spnResult;
747   }
748 
749   G4double CrossSectionsMultiPions::NDeltaToNN(Particle const * const p1, Particle const * const p2) {
750     const G4int isospin = ParticleTable::getIsospin(p1->getType()) + ParticleTable::getIsospin(p2->getType());
751     if(isospin==4 || isospin==-4) return 0.0;
752 
753     G4double s = KinematicsUtils::squareTotalEnergyInCM(p1, p2);
754     G4double Ecm = std::sqrt(s);
755     G4int deltaIsospin;
756     G4double deltaMass;
757     if(p1->isDelta()) {
758       deltaIsospin = ParticleTable::getIsospin(p1->getType());
759       deltaMass = p1->getMass();
760     } else {
761       deltaIsospin = ParticleTable::getIsospin(p2->getType());
762       deltaMass = p2->getMass();
763     }
764 
765     if(Ecm <= 938.3 + deltaMass) {
766       return 0.0;
767     }
768 
769     if(Ecm < 938.3 + deltaMass + 2.0) {
770       Ecm = 938.3 + deltaMass + 2.0;
771       s = Ecm*Ecm;
772     }
773 
774     const G4double x = (s - 4.*ParticleTable::effectiveNucleonMass2) /
775       (s - std::pow(ParticleTable::effectiveNucleonMass + deltaMass, 2));
776     const G4double y = s/(s - std::pow(deltaMass - ParticleTable::effectiveNucleonMass, 2));
777     /* Concerning the way we calculate the lab momentum, see the considerations
778      * in CrossSections::elasticNNLegacy().
779      */
780     G4double sDelta;
781     const G4double xsiso2=NNInelasticIso(Ecm, 2);
782     if (isospin != 0)
783       sDelta = NNOnePiOrDelta(Ecm, isospin, xsiso2);
784     else {
785       const G4double xsiso0=NNInelasticIso(Ecm, 0);
786       sDelta = 0.25*(NNOnePiOrDelta(Ecm, 0, xsiso0)+ NNOnePiOrDelta(Ecm, 2, xsiso2));
787     }
788     G4double result = 0.5 * x * y * sDelta;
789     /* modification for pion-induced cascade (see JC and MC LEMAIRE,NPA489(88)781
790      * result=3.*result
791      * pi absorption increased also for internal pions (7/3/01)
792      */
793     result *= 3.*(32.0 + isospin * isospin * (deltaIsospin * deltaIsospin - 5))/64.0;
794     result /= 1.0 + 0.25 * (isospin * isospin);
795     return result;
796   }
797 
798   G4double CrossSectionsMultiPions::NNToNDelta(Particle const * const p1, Particle const * const p2) {
799 // assert(p1->isNucleon() && p2->isNucleon());
800     const G4int isospin = ParticleTable::getIsospin(p1->getType()) + ParticleTable::getIsospin(p2->getType());
801     G4double sigma = NNOnePiOrDelta(p1, p2);
802     if(isospin==0)
803       sigma *= 0.5;
804     return sigma;
805   }
806 
807   G4double CrossSectionsMultiPions::elastic(Particle const * const p1, Particle const * const p2) {
808 //    if(!p1->isPion() && !p2->isPion()){
809     if((p1->isNucleon()||p1->isDelta()) && (p2->isNucleon()||p2->isDelta())){
810       return NNElastic(p1, p2);
811       }
812 //    else if (p1->isNucleon() || p2->isNucleon()){
813   else if ((p1->isNucleon() && p2->isPion()) || (p2->isNucleon() && p1->isPion())){
814       G4double pielas = piNTot(p1,p2) - piNIne(p1,p2) - piNToDelta(p1,p2);
815         if (pielas < 0.){
816             pielas = 0.;
817         }
818 //        return piNTot(p1,p2) - piNIne(p1,p2) - piNToDelta(p1,p2);
819         return pielas;
820       }
821     else {
822        return 0.0;
823       }
824   }
825 
826   G4double CrossSectionsMultiPions::calculateNNAngularSlope(G4double pl, G4int iso) {
827     G4double x = 0.001 * pl; // Change to GeV
828     if(iso != 0) {
829       if(pl <= 2000.0) {
830         x = std::pow(x, 8);
831         return 5.5e-6 * x/(7.7 + x);
832       } else {
833         return (5.34 + 0.67*(x - 2.0)) * 1.0e-6;
834       }
835     } else {
836       if(pl < 800.0) {
837         G4double b = (7.16 - 1.63*x) * 1.0e-6;
838         return b/(1.0 + std::exp(-(x - 0.45)/0.05));
839       } else if(pl < 1100.0) {
840         return (9.87 - 4.88 * x) * 1.0e-6;
841       } else {
842         return (3.68 + 0.76*x) * 1.0e-6;
843       }
844     }
845     return 0.0; // Should never reach this point
846   }
847 
848 
849     G4double CrossSectionsMultiPions::piNToxPiN(const G4int xpi, Particle const * const particle1, Particle const * const particle2) {
850         //
851         //     pion-Nucleon producing xpi pions cross sections
852         //
853     const Particle *pion;
854     const Particle *nucleon;
855     if(particle1->isNucleon()) {
856       nucleon = particle1;
857       pion = particle2;
858     } else {
859       pion = particle1;
860       nucleon = particle2;
861     }
862 // assert(xpi>1 && xpi<=nMaxPiPiN);
863 // assert((particle1->isNucleon() && particle2->isPion()) || (particle1->isPion() && particle2->isNucleon()));
864         const G4double plab = KinematicsUtils::momentumInLab(pion,nucleon);
865     if (xpi == 2) {
866       G4double OnePi=piNOnePi(particle1,particle2);
867       if (OnePi < 1.e-09) OnePi = 0.;
868             return OnePi;
869         }
870         else if (xpi == 3){
871       G4double TwoPi=piNTwoPi(particle1,particle2);
872       if (TwoPi < 1.e-09) TwoPi = 0.;                 
873             return TwoPi;
874         }
875         else if (xpi == 4) {
876             G4double piNThreePi = piNIne(particle1,particle2) - piNOnePi(particle1,particle2) - piNTwoPi(particle1,particle2);
877             if (piNThreePi < 1.e-09 || plab < 2000.) piNThreePi = 0.;                 
878             return piNThreePi;
879         } else // should never reach this point
880           return 0.0;
881     }
882 
883   G4double CrossSectionsMultiPions::piNOnePi(Particle const * const particle1, Particle const * const particle2) {
884     const Particle *pion;
885     const Particle *nucleon;
886     if(particle1->isNucleon()) {
887       nucleon = particle1;
888       pion = particle2;
889     } else {
890       pion = particle1;
891       nucleon = particle2;
892     }
893 // assert(pion->isPion());
894     
895     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
896     
897     // this limit corresponds to sqrt(s)=1230 MeV
898     if(pLab<296.367)
899       return 0.0;
900     
901     const G4int ipi = ParticleTable::getIsospin(pion->getType());
902     const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
903     const G4int cg = 4 + ind2*ipi;
904 // assert(cg==2 || cg==4 || cg==6);
905     
906     //  const G4double p1=1e-3*pLab;
907     G4double tamp6=0.;
908     G4double tamp2=0.;
909     const G4double elas = elastic(particle1, particle2);
910     
911     //   X-SECTION PI+ P INELASTIQUE :
912     if(cg != 2) {
913       tamp6=piPluspOnePi(particle1,particle2);
914       if (cg == 6){ //   CAS PI+ P ET PI- N
915         if(tamp6 >= elas && pLab < 410.) tamp6 = elas;
916         return tamp6;
917       }
918     }
919     
920     //   X-SECTION PI- P INELASTIQUE :
921     tamp2=piMinuspOnePi(particle1,particle2);
922     if (tamp2 < 0.0) tamp2=0;
923     
924     if (cg == 2) //   CAS PI- P ET PI+ N
925       return tamp2;
926     else {       //   CAS PI0 P ET PI0 N
927       G4double s1pin = 0.5*(tamp6+tamp2);
928       const G4double inelastic = piNIne(particle1, particle2);
929       if(s1pin >= elas && pLab < 410.) s1pin = 0.;
930       if (s1pin > inelastic)
931         s1pin = inelastic;
932       return s1pin;
933     }
934   }
935   
936   G4double CrossSectionsMultiPions::piNTwoPi(Particle const * const particle1, Particle const * const particle2) {
937     //
938     //     pion-nucleon interaction, producing 2 pions
939     //     fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
940     //
941     
942     const Particle *pion;
943     const Particle *nucleon;
944     if(particle1->isNucleon()) {
945       nucleon = particle1;
946       pion = particle2;
947     } else {
948       pion = particle1;
949       nucleon = particle2;
950     }
951 // assert(pion->isPion());
952     
953     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
954     const G4double elas = elastic(pion, nucleon);
955     
956     // this limit corresponds to sqrt(s)=1230 MeV
957     if(pLab<296.367)
958       return 0.0;
959     
960     const G4int ipi = ParticleTable::getIsospin(pion->getType());
961     const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
962     const G4int cg = 4 + ind2*ipi;
963 // assert(cg==2 || cg==4 || cg==6);
964     
965     G4double tamp6=0.;
966     G4double tamp2=0.;
967     
968     //   X-SECTION PI+ P INELASTIQUE :
969     if(cg!=2) {
970       tamp6=piPluspTwoPi(particle1,particle2);
971       if(cg==6){ //   CAS PI+ P ET PI- N
972         if(tamp6 >= elas && pLab < 410.) tamp6 = 0.;
973         return tamp6;}
974     }
975     
976     //   X-SECTION PI- P INELASTIQUE :
977     tamp2=piMinuspTwoPi(particle1,particle2);
978     
979     if(cg==2) //   CAS PI- P ET PI+ N
980       return tamp2;
981     else {    //   CAS PI0 P ET PI0 N
982       const G4double s2pin=0.5*(tamp6+tamp2);
983       return s2pin;
984     }
985   }
986   
987   G4double CrossSectionsMultiPions::piPluspIne(Particle const * const particle1, Particle const * const particle2) {
988     //      piPlusP inelastic cross section (Delta excluded)
989     
990     const Particle *pion;
991     const Particle *nucleon;
992     if(particle1->isNucleon()) {
993       nucleon = particle1;
994       pion = particle2;
995     } else {
996       pion = particle1;
997       nucleon = particle2;
998     }
999 // assert(pion->isPion());
1000     
1001     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1002     
1003     // these limits correspond to sqrt(s)=1230 and 20000 MeV
1004     if(pLab>212677. || pLab<296.367)
1005       return 0.0;
1006     
1007 //    const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
1008 //    const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
1009 //    const G4int cg = 4 + ind2t3*ipit3;
1010 //    assert(cg==2 || cg==4 || cg==6);
1011     
1012     const G4double p1=1e-3*pLab;
1013     const G4double p2=std::log(p1);
1014     G4double xpipp = 0.0;
1015     
1016     // x-section pi+ p inelastique :
1017     if(p1<=0.75)
1018       xpipp=17.965*std::pow(p1, 5.4606);
1019     else
1020       xpipp=24.3-12.3*std::pow(p1, -1.91)+0.324*p2*p2-2.44*p2;
1021     // cas pi+ p et pi- n
1022     return xpipp;
1023     
1024   }
1025 
1026   G4double CrossSectionsMultiPions::piMinuspIne(Particle const * const particle1, Particle const * const particle2) {
1027     //      piMinusp inelastic cross section (Delta excluded)
1028     
1029     const Particle *pion;
1030     const Particle *nucleon;
1031     if(particle1->isNucleon()) {
1032       nucleon = particle1;
1033       pion = particle2;
1034     } else {
1035       pion = particle1;
1036       nucleon = particle2;
1037     }
1038 // assert(pion->isPion());
1039     
1040     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1041     
1042     // these limits correspond to sqrt(s)=1230 and 20000 MeV
1043     if(pLab>212677. || pLab<296.367)
1044       return 0.0;
1045     
1046 //    const G4int ipit3 = ParticleTable::getIsospin(pion->getType());
1047 //    const G4int ind2t3 = ParticleTable::getIsospin(nucleon->getType());
1048 //    const G4int cg = 4 + ind2t3*ipit3;
1049 //    assert(cg==2 || cg==4 || cg==6);
1050     
1051     const G4double p1=1e-3*pLab;
1052     const G4double p2=std::log(p1);
1053     G4double xpimp = 0.0;
1054     
1055     // x-section pi- p inelastique :
1056     if(p1 <= 0.4731)
1057       xpimp=0;
1058     else
1059       xpimp=26.6-7.18*std::pow(p1, -1.86)+0.327*p2*p2-2.81*p2;
1060     if(xpimp<0.)
1061       xpimp=0;
1062     
1063     // cas pi- p et pi+ n
1064     return xpimp;
1065     
1066   }
1067 
1068   G4double CrossSectionsMultiPions::piPluspOnePi(Particle const * const particle1, Particle const * const particle2) {
1069     const Particle *pion;
1070     const Particle *nucleon;
1071     if(particle1->isNucleon()) {
1072       nucleon = particle1;
1073       pion = particle2;
1074     } else {
1075       pion = particle1;
1076       nucleon = particle2;
1077     }
1078 // assert(pion->isPion());
1079     
1080     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1081     
1082     // this limit corresponds to sqrt(s)=1230 MeV
1083     if(pLab<296.367)
1084       return 0.0;
1085     
1086     //  const G4int ipi = ParticleTable::getIsospin(pion->getType());
1087     //  const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1088     //  const G4int cg = 4 + ind2*ipi;
1089     //  assert(cg==2 || cg==4 || cg==6);
1090     
1091     const G4double p1=1e-3*pLab;
1092     G4double tamp6=0.;
1093     
1094     //   X-SECTION PI+ P INELASTIQUE :
1095     if(pLab < 1532.52) // corresponds to sqrt(s)=1946 MeV
1096       tamp6=piPluspIne(particle1, particle2);
1097     else
1098       tamp6=0.204+18.2*std::pow(p1, -1.72)+6.33*std::pow(p1, -1.13);
1099     
1100     //   CAS PI+ P ET PI- N
1101     return tamp6;
1102     
1103   }
1104 
1105   G4double CrossSectionsMultiPions::piMinuspOnePi(Particle const * const particle1, Particle const * const particle2) {
1106     const Particle *pion;
1107     const Particle *nucleon;
1108     if(particle1->isNucleon()) {
1109       nucleon = particle1;
1110       pion = particle2;
1111     } else {
1112       pion = particle1;
1113       nucleon = particle2;
1114     }
1115 // assert(pion->isPion());
1116     
1117     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1118     
1119     // this limit corresponds to sqrt(s)=1230 MeV
1120     if(pLab<296.367)
1121       return 0.0;
1122     
1123     //  const G4int ipi = ParticleTable::getIsospin(pion->getType());
1124     //  const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1125     //  const G4int cg = 4 + ind2*ipi;
1126     //  assert(cg==2 || cg==4 || cg==6);
1127     
1128     const G4double p1=1e-3*pLab;
1129     G4double tamp2=0.;
1130     
1131     //   X-SECTION PI- P INELASTIQUE :
1132     if (pLab < 1228.06) // corresponds to sqrt(s)=1794 MeV
1133       tamp2=piMinuspIne(particle1, particle2);
1134     else
1135       tamp2=9.04*std::pow(p1, -1.17)+18.*std::pow(p1, -1.21); // tamp2=9.04*std::pow(p1, -1.17)+(13.5*std::pow(p1, -1.21))*4./3.;
1136     if (tamp2 < 0.0) tamp2=0;
1137     
1138     //   CAS PI- P ET PI+ N
1139     return tamp2;
1140   }
1141 
1142   G4double CrossSectionsMultiPions::piPluspTwoPi(Particle const * const particle1, Particle const * const particle2) {
1143     //
1144     //     pion-nucleon interaction, producing 2 pions
1145     //     fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
1146     //
1147     
1148     const Particle *pion;
1149     const Particle *nucleon;
1150     if(particle1->isNucleon()) {
1151       nucleon = particle1;
1152       pion = particle2;
1153     } else {
1154       pion = particle1;
1155       nucleon = particle2;
1156     }
1157 // assert(pion->isPion());
1158     
1159     const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1160     
1161     // this limit corresponds to sqrt(s)=1230 MeV
1162     if(pLab<296.367)
1163       return 0.0;
1164     
1165     //  const G4int ipi = ParticleTable::getIsospin(pion->getType());
1166     //  const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1167     //  const G4int cg = 4 + ind2*ipi;
1168     //  assert(cg==2 || cg==4 || cg==6);
1169     
1170     const G4double p1=1e-3*pLab;
1171     G4double tamp6=0.;
1172     
1173     //   X-SECTION PI+ P INELASTIQUE :
1174     if(pLab < 2444.7) // corresponds to sqrt(s)=2344 MeV
1175       tamp6=piPluspIne(particle1, particle2)-piPluspOnePi(particle1, particle2);
1176     else
1177       tamp6=1.59+25.5*std::pow(p1, -1.04); // tamp6=(0.636+10.2*std::pow(p1, -1.04))*15./6.;
1178     
1179     //   CAS PI+ P ET PI- N
1180     return tamp6;
1181   }
1182   
1183     G4double CrossSectionsMultiPions::piMinuspTwoPi(Particle const * const particle1, Particle const * const particle2) {
1184   //
1185   //     pion-nucleon interaction, producing 2 pions
1186   //     fit from Landolt-Bornstein multiplied by factor determined with evaluation of total xs
1187   //
1188   
1189   const Particle *pion;
1190   const Particle *nucleon;
1191   if(particle1->isNucleon()) {
1192     nucleon = particle1;
1193     pion = particle2;
1194   } else {
1195     pion = particle1;
1196     nucleon = particle2;
1197   }
1198 // assert(pion->isPion());
1199   
1200   const G4double pLab = KinematicsUtils::momentumInLab(pion, nucleon);
1201   
1202   // this limit corresponds to sqrt(s)=1230 MeV
1203   if(pLab<296.367)
1204     return 0.0;
1205   
1206   //  const G4int ipi = ParticleTable::getIsospin(pion->getType());
1207   //  const G4int ind2 = ParticleTable::getIsospin(nucleon->getType());
1208   //  const G4int cg = 4 + ind2*ipi;
1209   //  assert(cg==2 || cg==4 || cg==6);
1210   
1211   const G4double p1=1e-3*pLab;
1212   G4double tamp2=0.;
1213   
1214   //   X-SECTION PI- P INELASTIQUE :
1215   if(pLab<2083.63) // corresponds to sqrt(s)=2195 MeV
1216     tamp2=piMinuspIne(particle1, particle2)-piMinuspOnePi(particle1, particle2);
1217   else
1218     tamp2=2.457794117647+18.066176470588*std::pow(p1, -0.92); // tamp2=(0.619+4.55*std::pow(p1, -0.92))*135./34.;
1219   
1220   //   CAS PI- P ET PI+ N
1221   return tamp2;
1222 }
1223 
1224 
1225 
1226   
1227     G4double CrossSectionsMultiPions::piNToEtaN(Particle const * const, Particle const * const) {
1228     //
1229     //     Pion-Nucleon producing Eta cross sections
1230     //
1231         return 0.;
1232     }
1233   
1234     G4double CrossSectionsMultiPions::piNToOmegaN(Particle const * const, Particle const * const) {
1235     //
1236     //     Pion-Nucleon producing Omega cross sections
1237     //
1238         return 0.;
1239     }
1240   
1241     G4double CrossSectionsMultiPions::piNToEtaPrimeN(Particle const * const, Particle const * const) {
1242     //
1243     //     Pion-Nucleon producing EtaPrime cross sections
1244     //
1245         return 0.;
1246     }
1247   
1248     G4double CrossSectionsMultiPions::etaNToPiN(Particle const * const, Particle const * const) {
1249     //
1250     //     Eta-Nucleon producing Pion cross sections
1251     //
1252           return 0.;
1253     }
1254 
1255   
1256      G4double CrossSectionsMultiPions::etaNToPiPiN(Particle const * const, Particle const * const) {
1257     //
1258     //     Eta-Nucleon producing Two Pions cross sections
1259     //
1260           return 0.;
1261      }
1262   
1263   
1264     G4double CrossSectionsMultiPions::omegaNToPiN(Particle const * const, Particle const * const) {
1265     //
1266     //     Omega-Nucleon producing Pion cross sections
1267     //
1268         return 0.;
1269     }
1270   
1271     G4double CrossSectionsMultiPions::omegaNToPiPiN(Particle const * const, Particle const * const) {
1272     //
1273     //     Omega-Nucleon producing Two Pions cross sections
1274     //
1275         return 0.;
1276     }
1277   
1278     G4double CrossSectionsMultiPions::etaPrimeNToPiN(Particle const * const, Particle const * const) {
1279     //
1280     //     EtaPrime-Nucleon producing Pion cross sections
1281     //
1282         return 0.;
1283     }
1284   
1285     G4double CrossSectionsMultiPions::NNToNNEta(Particle const * const, Particle const * const) {
1286     //
1287     //     Nucleon-Nucleon producing Eta cross sections
1288     //
1289         return 0.;
1290     }
1291   
1292   G4double CrossSectionsMultiPions::NNToNNEtaExclu(Particle const * const, Particle const * const) {
1293     //
1294     //     Nucleon-Nucleon producing Eta cross sections
1295     //
1296       return 0.;
1297      }
1298   
1299   G4double CrossSectionsMultiPions::NNToNNEtaxPi(const G4int, Particle const * const, Particle const * const) {
1300       return 0.;
1301      }
1302 
1303     G4double CrossSectionsMultiPions::NNToNDeltaEta(Particle const * const, Particle const * const) {
1304     //
1305     //     Nucleon-Nucleon producing N-Delta-Eta cross sections
1306     //
1307     return 0.;
1308     }
1309 
1310     G4double CrossSectionsMultiPions::NNToNNOmega(Particle const * const, Particle const * const) {
1311     //
1312     //     Nucleon-Nucleon producing Omega cross sections
1313     //
1314      return 0.;
1315     }
1316   
1317     G4double CrossSectionsMultiPions::NNToNNOmegaExclu(Particle const * const, Particle const * const) {
1318     //
1319     //     Nucleon-Nucleon producing Omega cross sections
1320     //
1321      return 0.;
1322     }
1323   
1324     G4double CrossSectionsMultiPions::NNToNNOmegaxPi(const G4int, Particle const * const, Particle const * const) {
1325      return 0.;
1326     }
1327  
1328     G4double CrossSectionsMultiPions::NNToNDeltaOmega(Particle const * const, Particle const * const) {
1329   //
1330   //     Nucleon-Nucleon producing N-Delta-Omega cross sections
1331   //
1332      return 0.;
1333     }
1334 
1335 
1336 
1337 
1338     G4double CrossSectionsMultiPions::NYelastic(Particle const * const , Particle const * const ) {
1339         //
1340         //      Hyperon-Nucleon elastic cross sections
1341         //
1342     return 0.;
1343     }
1344 
1345     G4double CrossSectionsMultiPions::NKelastic(Particle const * const , Particle const * const ) {
1346         //
1347         //      Kaon-Nucleon elastic cross sections
1348         //
1349     return 0.;
1350   }
1351 
1352     G4double CrossSectionsMultiPions::NKbelastic(Particle const * const , Particle const * const ) {
1353         //
1354         //      antiKaon-Nucleon elastic cross sections
1355         //
1356     return 0.;
1357   }
1358 
1359 
1360   G4double CrossSectionsMultiPions::NNToNLK(Particle const * const, Particle const * const) {
1361         //
1362         //      Nucleon-Nucleon producing N-Lambda-Kaon cross sections
1363         //
1364         return 0.;
1365     }
1366 
1367     G4double CrossSectionsMultiPions::NNToNSK(Particle const * const, Particle const * const) {
1368         //
1369         //      Nucleon-Nucleon producing N-Sigma-Kaon cross sections
1370         //
1371         return 0.;
1372     }
1373 
1374     G4double CrossSectionsMultiPions::NNToNLKpi(Particle const * const, Particle const * const) {
1375         //
1376         //      Nucleon-Nucleon producing N-Lambda-Kaon-pion cross sections
1377         //
1378         return 0.;
1379     }
1380 
1381     G4double CrossSectionsMultiPions::NNToNSKpi(Particle const * const, Particle const * const) {
1382         //
1383         //      Nucleon-Nucleon producing N-Sigma-Kaon-pion cross sections
1384         //
1385         return 0.;
1386     }
1387 
1388     G4double CrossSectionsMultiPions::NNToNLK2pi(Particle const * const, Particle const * const) {
1389         //
1390         //     Nucleon-Nucleon producing N-Lambda-Kaon-2pion cross sections
1391         //
1392         return 0.;
1393     }
1394 
1395     G4double CrossSectionsMultiPions::NNToNSK2pi(Particle const * const, Particle const * const) {
1396         //
1397         //      Nucleon-Nucleon producing N-Sigma-Kaon-2pion cross sections
1398         //
1399         return 0.;
1400     }
1401 
1402     G4double CrossSectionsMultiPions::NNToNNKKb(Particle const * const, Particle const * const) {
1403         //
1404         //      Nucleon-Nucleon producing Nucleon-Nucleon-Kaon-antiKaon cross sections
1405         //
1406         return 0.;
1407     }
1408 
1409     G4double CrossSectionsMultiPions::NNToMissingStrangeness(Particle const * const, Particle const * const) {
1410         //
1411         //      Nucleon-Nucleon missing strangeness production cross sections
1412         //
1413         return 0.;
1414     }
1415 
1416     G4double CrossSectionsMultiPions::NDeltaToNLK(Particle const * const, Particle const * const) {
1417         // Nucleon-Delta producing Nucleon Lambda Kaon cross section
1418         return 0;
1419     }
1420     G4double CrossSectionsMultiPions::NDeltaToNSK(Particle const * const, Particle const * const) {
1421         // Nucleon-Delta producing Nucleon Sigma Kaon cross section
1422         return 0;
1423     }
1424     G4double CrossSectionsMultiPions::NDeltaToDeltaLK(Particle const * const, Particle const * const) {
1425         // Nucleon-Delta producing Delta Lambda Kaon cross section
1426         return 0;
1427     }
1428     G4double CrossSectionsMultiPions::NDeltaToDeltaSK(Particle const * const, Particle const * const) {
1429         // Nucleon-Delta producing Delta Sigma Kaon cross section
1430         return 0;
1431     }
1432     
1433     G4double CrossSectionsMultiPions::NDeltaToNNKKb(Particle const * const, Particle const * const) {
1434         // Nucleon-Delta producing Nucleon-Nucleon Kaon antiKaon cross section
1435         return 0;
1436     }
1437 
1438 
1439     G4double CrossSectionsMultiPions::NpiToLK(Particle const * const, Particle const * const) {
1440         //
1441         //      Pion-Nucleon producing Lambda-Kaon cross sections
1442         //
1443         return 0.;
1444     }
1445 
1446     G4double CrossSectionsMultiPions::NpiToSK(Particle const * const, Particle const * const) {
1447         //
1448         //      Pion-Nucleon producing Sigma-Kaon cross sections
1449         //
1450         return 0.;
1451     }
1452     G4double CrossSectionsMultiPions::p_pimToSmKp(Particle const * const, Particle const * const) {
1453         return 0.;
1454     }
1455     G4double CrossSectionsMultiPions::p_pimToSzKz(Particle const * const, Particle const * const) {
1456         return 0.;
1457     }
1458     G4double CrossSectionsMultiPions::p_pizToSzKp(Particle const * const, Particle const * const) {
1459         return 0.;
1460     }
1461 
1462     G4double CrossSectionsMultiPions::NpiToLKpi(Particle const * const, Particle const * const) {
1463         //
1464         //      Pion-Nucleon producing Lambda-Kaon-pion cross sections
1465         //
1466         return 0.;
1467     }
1468 
1469     G4double CrossSectionsMultiPions::NpiToSKpi(Particle const * const, Particle const * const) {
1470         //
1471         //      Pion-Nucleon producing Sigma-Kaon-pion cross sections
1472         //
1473         return 0.;
1474     }
1475 
1476     G4double CrossSectionsMultiPions::NpiToLK2pi(Particle const * const, Particle const * const) {
1477         //
1478         //      Pion-Nucleon producing Lambda-Kaon-2pion cross sections
1479         //
1480         return 0.;
1481     }
1482 
1483     G4double CrossSectionsMultiPions::NpiToSK2pi(Particle const * const, Particle const * const) {
1484         //
1485         //      Pion-Nucleon producing Lambda-Kaon-2pion cross sections
1486         //
1487         return 0.;
1488     }
1489 
1490     G4double CrossSectionsMultiPions::NpiToNKKb(Particle const * const, Particle const * const) {
1491         //
1492         //      Pion-Nucleon producing Nucleon-Kaon-antiKaon cross sections
1493         //
1494         return 0.;
1495     }
1496 
1497     G4double CrossSectionsMultiPions::NpiToMissingStrangeness(Particle const * const, Particle const * const) {
1498         //
1499         //      Pion-Nucleon missing strangeness production cross sections
1500         //
1501         return 0.;
1502     }
1503 
1504     G4double CrossSectionsMultiPions::NLToNS(Particle const * const, Particle const * const) {
1505         //
1506         //      Nucleon-Hyperon multiplet changing cross sections
1507         //
1508         return 0.;
1509     }
1510 
1511     G4double CrossSectionsMultiPions::NSToNL(Particle const * const, Particle const * const) {
1512         //
1513         //      Nucleon-Sigma quasi-elastic cross sections
1514         //
1515         return 0.;
1516     }
1517 
1518     G4double CrossSectionsMultiPions::NSToNS(Particle const * const, Particle const * const) {
1519         //
1520         //      Nucleon-Sigma quasi-elastic cross sections
1521         //
1522         return 0.;
1523     }
1524 
1525     G4double CrossSectionsMultiPions::NKToNK(Particle const * const, Particle const * const) {
1526         //
1527         //      Nucleon-Kaon quasi-elastic cross sections
1528         //
1529         return 0.;
1530     }
1531 
1532     G4double CrossSectionsMultiPions::NKToNKpi(Particle const * const, Particle const * const) {
1533         //
1534         //      Nucleon-Kaon producing Nucleon-Kaon-pion cross sections
1535         //
1536         return 0.;
1537     }
1538 
1539     G4double CrossSectionsMultiPions::NKToNK2pi(Particle const * const, Particle const * const) {
1540         //
1541         //      Nucleon-Kaon producing Nucleon-Kaon-2pion cross sections
1542         //
1543         return 0.;
1544     }
1545 
1546     G4double CrossSectionsMultiPions::NKbToNKb(Particle const * const, Particle const * const) {
1547         //
1548         //      Nucleon-antiKaon quasi-elastic cross sections
1549         //
1550         return 0.;
1551     }
1552 
1553     G4double CrossSectionsMultiPions::NKbToSpi(Particle const * const, Particle const * const) {
1554         //
1555         //      Nucleon-antiKaon producing Sigma-pion cross sections
1556         //
1557         return 0.;
1558     }
1559 
1560     G4double CrossSectionsMultiPions::NKbToLpi(Particle const * const, Particle const * const) {
1561         //
1562         //      Nucleon-antiKaon producing Lambda-pion cross sections
1563         //
1564         return 0.;
1565     }
1566     
1567     G4double CrossSectionsMultiPions::NKbToS2pi(Particle const * const, Particle const * const) {
1568         //
1569         //      Nucleon-antiKaon producing Sigma-2pion cross sections
1570         //
1571         return 0.;
1572     }
1573 
1574     G4double CrossSectionsMultiPions::NKbToL2pi(Particle const * const, Particle const * const) {
1575         //
1576         //      Nucleon-antiKaon producing Lambda-2pion cross sections
1577         //
1578         return 0.;
1579     }
1580 
1581     G4double CrossSectionsMultiPions::NKbToNKbpi(Particle const * const, Particle const * const) {
1582         //
1583         //      Nucleon-antiKaon producing Nucleon-antiKaon-pion cross sections
1584         //
1585         return 0.;
1586     }
1587 
1588     G4double CrossSectionsMultiPions::NKbToNKb2pi(Particle const * const, Particle const * const) {
1589         //
1590         //      Nucleon-antiKaon producing Nucleon-antiKaon-2pion cross sections
1591         //
1592         return 0.;
1593     }
1594         
1595     G4double CrossSectionsMultiPions::NNbarElastic(Particle const* const, Particle const* const){
1596         //
1597         //     Nucleon-AntiNucleon to Nucleon-AntiNucleon cross sections
1598         //
1599       return 0.;
1600     }
1601 
1602     G4double CrossSectionsMultiPions::NNbarCEX(Particle const* const, Particle const* const){
1603         //
1604         //     Nucleon-AntiNucleon charge exchange cross sections
1605         //
1606       return 0.;
1607     }
1608 
1609     G4double CrossSectionsMultiPions::NNbarToLLbar(Particle const* const, Particle const* const){
1610         //
1611         //     Nucleon-AntiNucleon to Lambda-AntiLambda cross sections
1612         //
1613       return 0.;
1614     }
1615       
1616     G4double CrossSectionsMultiPions::NNbarToNNbarpi(Particle const* const, Particle const* const){
1617         //
1618         //     Nucleon-AntiNucleon to Nucleon-AntiNucleon + 1 pion cross sections
1619         //
1620       return 0.;
1621     }
1622 
1623     G4double CrossSectionsMultiPions::NNbarToNNbar2pi(Particle const* const, Particle const* const){
1624         //
1625         //     Nucleon-AntiNucleon to Nucleon-AntiNucleon + 2 pions cross sections
1626         //
1627       return 0.;
1628     }
1629     
1630     G4double CrossSectionsMultiPions::NNbarToNNbar3pi(Particle const* const, Particle const* const){
1631         //
1632         //     Nucleon-AntiNucleon to Nucleon-AntiNucleon + 3 pions cross sections
1633         //
1634       return 0.;
1635     }
1636      
1637     G4double CrossSectionsMultiPions::NNbarToAnnihilation(Particle const* const, Particle const* const){
1638         //
1639         //     Nucleon-AntiNucleon total annihilation cross sections
1640         //
1641       return 0.;
1642     }
1643 } // namespace G4INCL
1644 
1645