Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // Hadronic Process: Nuclear De-excitations 29 // by V. Lara 30 31 #include "G4StatMFMacroChemicalPotential.hh" 32 #include "G4PhysicalConstants.hh" 33 #include "G4Pow.hh" 34 35 // operators definitions 36 G4StatMFMacroChemicalPotential & 37 G4StatMFMacroChemicalPotential::operator=(const G4StatMFMacroChemicalPotential & ) 38 { 39 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator= meant to not be accessible"); 40 return *this; 41 } 42 43 G4bool G4StatMFMacroChemicalPotential::operator==(const G4StatMFMacroChemicalPotential & ) const 44 { 45 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator== meant to not be accessible"); 46 return false; 47 } 48 49 50 G4bool G4StatMFMacroChemicalPotential::operator!=(const G4StatMFMacroChemicalPotential & ) const 51 { 52 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::operator!= meant to not be accessible"); 53 return true; 54 } 55 56 G4double G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu(void) 57 // Calculate Chemical potential \nu 58 { 59 G4Pow* g4calc = G4Pow::GetInstance(); 60 G4double CP = G4StatMFParameters::GetCoulomb(); 61 62 // Initial value for _ChemPotentialNu 63 _ChemPotentialNu = (theZ/theA)*(8.0*G4StatMFParameters::GetGamma0() 64 +2.0*CP*g4calc->Z23(theA)) 65 - 4.0*G4StatMFParameters::GetGamma0(); 66 67 G4double ChemPa = _ChemPotentialNu; 68 G4double ChemPb = 0.5*_ChemPotentialNu; 69 70 G4double fChemPa = this->operator()(ChemPa); 71 G4double fChemPb = this->operator()(ChemPb); 72 73 if (fChemPa*fChemPb > 0.0) { 74 // bracketing the solution 75 if (fChemPa < 0.0) { 76 do { 77 ChemPb -= 1.5*std::abs(ChemPb-ChemPa); 78 fChemPb = this->operator()(ChemPb); 79 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 80 } while (fChemPb < 0.0); 81 } else { 82 do { 83 ChemPb += 1.5*std::abs(ChemPb-ChemPa); 84 fChemPb = this->operator()(ChemPb); 85 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko 86 } while (fChemPb > 0.0); 87 } 88 } 89 90 G4Solver<G4StatMFMacroChemicalPotential> * theSolver = 91 new G4Solver<G4StatMFMacroChemicalPotential>(100,1.e-4); 92 theSolver->SetIntervalLimits(ChemPa,ChemPb); 93 // if (!theSolver->Crenshaw(*this)) 94 if (!theSolver->Brent(*this)){ 95 G4cout <<"G4StatMFMacroChemicalPotential:"<<" ChemPa="<<ChemPa 96 <<" ChemPb="<<ChemPb<< G4endl; 97 G4cout <<"G4StatMFMacroChemicalPotential:"<<" fChemPa="<<fChemPa 98 <<" fChemPb="<<fChemPb<< G4endl; 99 throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMacroChemicalPotential::CalcChemicalPotentialNu: I couldn't find the root."); 100 } 101 _ChemPotentialNu = theSolver->GetRoot(); 102 delete theSolver; 103 return _ChemPotentialNu; 104 } 105 106 107 108 G4double G4StatMFMacroChemicalPotential::CalcMeanZ(const G4double nu) 109 { 110 std::vector<G4VStatMFMacroCluster*>::iterator i; 111 for (i= _theClusters->begin()+1; i != _theClusters->end(); ++i) 112 { 113 (*i)->CalcZARatio(nu); 114 } 115 CalcChemicalPotentialMu(nu); 116 // This is important, the Z over A ratio for proton and neutron depends on the 117 // chemical potential Mu, while for the first guess for Chemical potential mu 118 // some values of Z over A ratio. This is the reason for that. 119 (*_theClusters->begin())->CalcZARatio(nu); 120 121 G4double MeanZ = 0.0; 122 G4int n = 1; 123 for (i = _theClusters->begin(); i != _theClusters->end(); ++i) 124 { 125 MeanZ += (n++) * (*i)->GetZARatio() * (*i)->GetMeanMultiplicity(); 126 } 127 return MeanZ; 128 } 129 130 void G4StatMFMacroChemicalPotential::CalcChemicalPotentialMu(const G4double nu) 131 // Calculate Chemical potential \mu 132 // For that is necesary to calculate mean multiplicities 133 { 134 G4StatMFMacroMultiplicity * theMultip = new 135 G4StatMFMacroMultiplicity(theA,_Kappa,_MeanTemperature,nu,_theClusters); 136 137 _ChemPotentialMu = theMultip->CalcChemicalPotentialMu(); 138 _MeanMultiplicity = theMultip->GetMeanMultiplicity(); 139 140 delete theMultip; 141 142 return; 143 } 144