Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/multifragmentation/src/G4StatMFMacroCanonical.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 // by V. Lara
 29 // --------------------------------------------------------------------
 30 //
 31 // Modified:
 32 // 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor 
 33 //          Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute, 
 34 //          Moscow, pshenich@fias.uni-frankfurt.de) fixed infinite loop for 
 35 //          a fagment with Z=A; fixed memory leak
 36 
 37 #include "G4StatMFMacroCanonical.hh"
 38 #include "G4PhysicalConstants.hh"
 39 #include "G4SystemOfUnits.hh"
 40 #include "G4Pow.hh"
 41 
 42 // constructor
 43 G4StatMFMacroCanonical::G4StatMFMacroCanonical(const G4Fragment & theFragment) 
 44 {
 45 
 46   // Get memory for clusters
 47   _theClusters.push_back(new G4StatMFMacroNucleon);              // Size 1
 48   _theClusters.push_back(new G4StatMFMacroBiNucleon);            // Size 2
 49   _theClusters.push_back(new G4StatMFMacroTriNucleon);           // Size 3
 50   _theClusters.push_back(new G4StatMFMacroTetraNucleon);         // Size 4
 51   for (G4int i = 4; i < theFragment.GetA_asInt(); i++)   
 52     _theClusters.push_back(new G4StatMFMacroMultiNucleon(i+1)); // Size 5 ... A
 53   
 54   // Perform class initialization
 55   Initialize(theFragment);
 56     
 57 }
 58 
 59 // destructor
 60 G4StatMFMacroCanonical::~G4StatMFMacroCanonical() 
 61 {
 62   // garbage collection
 63   if (!_theClusters.empty()) 
 64     {
 65       std::for_each(_theClusters.begin(),_theClusters.end(),DeleteFragment());
 66     }
 67 }
 68 
 69 // Initialization method
 70 void G4StatMFMacroCanonical::Initialize(const G4Fragment & theFragment) 
 71 {
 72   
 73   G4int A = theFragment.GetA_asInt();
 74   G4int Z = theFragment.GetZ_asInt();
 75   G4double x = 1.0 - 2.0*Z/G4double(A);
 76   G4Pow* g4calc = G4Pow::GetInstance();
 77   
 78   // Free Internal energy at T = 0
 79   __FreeInternalE0 = A*( -G4StatMFParameters::GetE0() +     // Volume term (for T = 0)
 80        G4StatMFParameters::GetGamma0()*x*x) // Symmetry term
 81     + G4StatMFParameters::GetBeta0()*g4calc->Z23(A) +   // Surface term (for T = 0)
 82     0.6*elm_coupling*Z*Z/(G4StatMFParameters::Getr0()*     // Coulomb term 
 83         g4calc->Z13(A));
 84   
 85   CalculateTemperature(theFragment);
 86   return;
 87 }
 88 
 89 void G4StatMFMacroCanonical::CalculateTemperature(const G4Fragment & theFragment)
 90 {
 91   // Excitation Energy
 92   G4double U = theFragment.GetExcitationEnergy();
 93   
 94   G4int A = theFragment.GetA_asInt();
 95   G4int Z = theFragment.GetZ_asInt();
 96   
 97   // Fragment Multiplicity
 98   G4double FragMult = std::max((1.0+(2.31/MeV)*(U/A - 3.5*MeV))*A/100.0, 2.0);
 99 
100   // Parameter Kappa
101   G4Pow* g4calc = G4Pow::GetInstance();
102   _Kappa = (1.0+elm_coupling*(g4calc->A13(FragMult)-1)/
103       (G4StatMFParameters::Getr0()*g4calc->Z13(A)));
104   _Kappa = _Kappa*_Kappa*_Kappa - 1.0;
105   
106   G4StatMFMacroTemperature * theTemp = new  
107     G4StatMFMacroTemperature(A,Z,U,__FreeInternalE0,_Kappa,&_theClusters);
108   
109   __MeanTemperature = theTemp->CalcTemperature();
110   _ChemPotentialNu = theTemp->GetChemicalPotentialNu();
111   _ChemPotentialMu = theTemp->GetChemicalPotentialMu();
112   __MeanMultiplicity = theTemp->GetMeanMultiplicity();
113   __MeanEntropy = theTemp->GetEntropy();
114   
115   delete theTemp;     
116   
117   return;
118 }
119 
120 // --------------------------------------------------------------------------
121 
122 G4StatMFChannel * G4StatMFMacroCanonical::ChooseAandZ(const G4Fragment &theFragment)
123 // Calculate total fragments multiplicity, fragment atomic numbers and charges
124 {
125   G4int A = theFragment.GetA_asInt();
126   G4int Z = theFragment.GetZ_asInt();
127   
128   std::vector<G4int> ANumbers(A);
129   
130   G4double Multiplicity = ChooseA(A,ANumbers);
131   
132   std::vector<G4int> FragmentsA;
133   
134   G4int i = 0;  
135   for (i = 0; i < A; i++) 
136     {
137       for (G4int j = 0; j < ANumbers[i]; j++) FragmentsA.push_back(i+1);
138     }
139   
140   // Sort fragments in decreasing order
141   G4int im = 0;
142   for (G4int j = 0; j < Multiplicity; j++) 
143     {
144       G4int FragmentsAMax = 0;
145       im = j;
146       for (i = j; i < Multiplicity; i++) 
147   {
148     if (FragmentsA[i] <= FragmentsAMax) { continue; }
149     else 
150       {
151         im = i;
152         FragmentsAMax = FragmentsA[im];
153       }
154   } 
155       if (im != j) 
156   {
157     FragmentsA[im] = FragmentsA[j];
158     FragmentsA[j]  = FragmentsAMax;
159   }
160     }
161   return ChooseZ(Z,FragmentsA);
162 }
163 
164 G4double G4StatMFMacroCanonical::ChooseA(G4int A, std::vector<G4int> & ANumbers)
165   // Determines fragments multiplicities and compute total fragment multiplicity
166 {
167   G4double multiplicity = 0.0;
168   G4int i;
169     
170   std::vector<G4double> AcumMultiplicity;
171   AcumMultiplicity.reserve(A);
172 
173   AcumMultiplicity.push_back((*(_theClusters.begin()))->GetMeanMultiplicity());
174   for (std::vector<G4VStatMFMacroCluster*>::iterator it = _theClusters.begin()+1;
175        it != _theClusters.end(); ++it)
176     {
177       AcumMultiplicity.push_back((*it)->GetMeanMultiplicity()+AcumMultiplicity.back());
178     }
179   
180   G4int CheckA;
181   do {
182     CheckA = -1;
183     G4int SumA = 0;
184     G4int ThisOne = 0;
185     multiplicity = 0.0;
186     for (i = 0; i < A; i++) ANumbers[i] = 0;
187     do {
188       G4double RandNumber = G4UniformRand()*__MeanMultiplicity;
189       for (i = 0; i < A; i++) {
190   if (RandNumber < AcumMultiplicity[i]) {
191     ThisOne = i;
192     break;
193   }
194       }
195       multiplicity++;
196       ANumbers[ThisOne] = ANumbers[ThisOne]+1;
197       SumA += ThisOne+1;
198       CheckA = A - SumA;
199       
200       // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
201     } while (CheckA > 0);
202     
203     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
204   } while (CheckA < 0 || std::abs(__MeanMultiplicity - multiplicity) > std::sqrt(__MeanMultiplicity) + 0.5);
205   
206   return multiplicity;
207 }
208 
209 G4StatMFChannel * G4StatMFMacroCanonical::ChooseZ(G4int & Z, 
210               std::vector<G4int> & FragmentsA)
211     // 
212 {
213   G4Pow* g4calc = G4Pow::GetInstance();
214   std::vector<G4int> FragmentsZ;
215   
216   G4int DeltaZ = 0;
217   G4double CP =  G4StatMFParameters::GetCoulomb();
218   G4int multiplicity = (G4int)FragmentsA.size();
219   
220   do {
221     FragmentsZ.clear();
222     G4int SumZ = 0;
223     for (G4int i = 0; i < multiplicity; ++i) 
224       {
225   G4int A = FragmentsA[i];
226   if (A <= 1) 
227     {
228       G4double RandNumber = G4UniformRand();
229       if (RandNumber < (*_theClusters.begin())->GetZARatio()) 
230         {
231     FragmentsZ.push_back(1);
232     SumZ += FragmentsZ[i];
233         } 
234       else FragmentsZ.push_back(0);
235     } 
236   else 
237     {
238       G4double RandZ;
239       G4double CC = 8.0*G4StatMFParameters::GetGamma0()
240         + 2*CP*g4calc->Z23(FragmentsA[i]);
241       G4double ZMean;
242       if (FragmentsA[i] > 1 && FragmentsA[i] < 5) { ZMean = 0.5*FragmentsA[i]; }
243       else {
244         ZMean = FragmentsA[i]*(4.0*G4StatMFParameters::GetGamma0()
245              + _ChemPotentialNu)/CC; 
246       }
247       G4double ZDispersion = std::sqrt(FragmentsA[i]*__MeanTemperature/CC);
248       G4int z;
249       do 
250         {
251     RandZ = G4RandGauss::shoot(ZMean,ZDispersion);
252     z = G4lrint(RandZ+0.5);
253     // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
254         } while (z < 0 || z > A);
255       FragmentsZ.push_back(z);
256       SumZ += z;
257     }
258       }
259     DeltaZ = Z - SumZ;
260   // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
261   } while (std::abs(DeltaZ) > 1);
262     
263   // DeltaZ can be 0, 1 or -1
264   G4int idx = 0;
265   if (DeltaZ < 0.0)
266     {
267       while (FragmentsZ[idx] < 1) { ++idx; }
268     }
269   FragmentsZ[idx] += DeltaZ;
270   
271   G4StatMFChannel * theChannel = new G4StatMFChannel;
272   for (G4int i = multiplicity-1; i >= 0; --i) 
273     {
274       theChannel->CreateFragment(FragmentsA[i],FragmentsZ[i]);
275     }
276  
277   return theChannel;
278 }
279