Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/de_excitation/management/src/G4VEmissionProbability.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Hadronic Process: Nuclear De-excitations
 27 // by V. Lara (Oct 1998)
 28 //
 29 // Modifications:
 30 // 28.10.2010 V.Ivanchenko defined members in constructor and cleaned up
 31 
 32 #include "G4VEmissionProbability.hh"
 33 #include "G4NuclearLevelData.hh"
 34 #include "G4LevelManager.hh"
 35 #include "G4DeexPrecoParameters.hh"
 36 #include "Randomize.hh"
 37 #include "G4Pow.hh"
 38 #include "G4Log.hh"
 39 #include "G4Exp.hh"
 40 
 41 G4VEmissionProbability::G4VEmissionProbability(G4int Z, G4int A)
 42   : pVerbose(1), theZ(Z), theA(A), elimit(CLHEP::MeV)
 43 {
 44   pNuclearLevelData = G4NuclearLevelData::GetInstance(); 
 45   pG4pow = G4Pow::GetInstance();
 46   if(A > 0) { pEvapMass = G4NucleiProperties::GetNuclearMass(theA, theZ); }
 47   G4DeexPrecoParameters* param = pNuclearLevelData->GetParameters();
 48   OPTxs = param->GetDeexModelType();
 49 }
 50 
 51 void G4VEmissionProbability::Initialise()
 52 {
 53   G4DeexPrecoParameters* param = pNuclearLevelData->GetParameters();
 54   pVerbose = param->GetVerbose();
 55   fFD = param->GetDiscreteExcitationFlag();
 56   pTolerance = param->GetMinExcitation();
 57   pWidth = param->GetNuclearLevelWidth();
 58 }
 59 
 60 void G4VEmissionProbability::ResetIntegrator(size_t, G4double de, G4double eps)
 61 {
 62   if(de > 0.0)  { elimit = de; }
 63   if(eps > 0.0) { accuracy = eps; }
 64 }
 65 
 66 G4double G4VEmissionProbability::EmissionProbability(const G4Fragment&, G4double)
 67 {
 68   return 0.0;
 69 }
 70 
 71 G4double G4VEmissionProbability::ComputeProbability(G4double, G4double)
 72 {
 73   return 0.0;
 74 }
 75 
 76 G4double G4VEmissionProbability::IntegrateProbability(G4double elow, 
 77                                                       G4double ehigh, 
 78                                                       G4double cb)
 79 {
 80   pProbability = 0.0;
 81   if(elow >= ehigh) { return pProbability; }
 82 
 83   emin = elow;
 84   emax = ehigh;
 85   eCoulomb = cb;
 86 
 87   const G4double edeltamin = 0.1*CLHEP::MeV;
 88   const G4double edeltamax = 2*CLHEP::MeV;
 89   G4double edelta = std::min(std::min(elimit, edeltamax), edeltamin);
 90   G4double xbin = (emax - emin)/edelta + 1.0;
 91   G4int ibin = std::max((G4int)xbin, 4);
 92 
 93   // providing smart binning 
 94   G4int nbin = ibin*5;
 95   edelta = (emax - emin)/ibin;
 96 
 97   G4double x(emin), y(0.0);
 98   G4double edelmicro = edelta*0.02;
 99   probmax = ComputeProbability(x + edelmicro, eCoulomb);
100   G4double problast = probmax;
101   if(pVerbose > 1) {
102     G4cout << "### G4VEmissionProbability::IntegrateProbability: "
103      << "probmax=" << probmax << " Emin=" << emin
104      << " Emax=" << emax << " QB=" << cb << " nbin=" << nbin 
105      << G4endl;
106   }
107   fE1 = fE2 = fP2 = 0.0;
108   G4double emax0 = emax - edelmicro; 
109   G4bool endpoint = false;
110   for(G4int i=0; i<nbin; ++i) {
111     x += edelta;
112     if(x >= emax0) { 
113       x = emax0;
114       endpoint = true;
115     }
116     y = ComputeProbability(x, eCoulomb);
117     if(pVerbose > 2) { 
118       G4cout << "    " << i << ".  E= " << x << "  prob= " << y
119        << " Edel= " << edelta << G4endl;
120     } 
121     if(y >= probmax) {
122       probmax = y;
123     } else if(0.0 == fE1 && 2*y < probmax) {
124       fE1 = x;
125     }
126     
127     G4double del = (y + problast)*edelta*0.5;
128     pProbability += del;
129     // end of the loop
130     if(del < accuracy*pProbability || endpoint) { break; }
131     problast = y;
132 
133     // smart step definition
134     if(del != pProbability && del > 0.8*pProbability && 
135        0.7*edelta > edeltamin) { 
136       edelta *= 0.7;
137     } else if(del < 0.1*pProbability && 1.5*edelta < edeltamax) { 
138       edelta *= 1.5;
139     }
140   }
141   if(fE1 > emin && fE1 < emax) {
142     fE2 = std::max(0.5*(fE1 + emax), emax - edelta);
143     fP2 = 2*ComputeProbability(fE2, eCoulomb);
144   }
145 
146   if(pVerbose > 1) { 
147     G4cout << " Probability= " << pProbability << " probmax= " 
148            << probmax << " emin=" << emin << " emax=" << emax 
149      << " E1=" << fE1 << " E2=" << fE2 << G4endl; 
150   }
151   return pProbability;
152 }
153 
154 G4double G4VEmissionProbability::SampleEnergy()
155 {
156   static const G4double fact = 1.05;
157   static const G4double alim = 0.05;
158   static const G4double blim = 20.;
159   probmax *= fact;
160 
161   // two regions with flat and exponential majorant 
162   G4double del = emax - emin;
163   G4double p1 = 1.0;
164   G4double p2 = 0.0;
165   G4double a0 = 0.0;
166   G4double a1 = 1.0;
167   G4double x;
168   if(fE1 > 0.0 && fP2 > 0.0 && fP2 < 0.5*probmax) {
169     a0 = G4Log(probmax/fP2)/(fE2 - fE1);
170     del= fE1 - emin;
171     p1 = del;
172     x = a0*(emax - fE1);
173     if(x < blim) {
174       a1 = (x > alim) ? 1.0 - G4Exp(-x) : x*(1.0 - 0.5*x);
175     }
176     p2 = a1/a0;
177     p1 /= (p1 + p2);
178     p2 = 1.0 - p1;
179   }  
180 
181   if(pVerbose > 1) {
182     G4cout << "### G4VEmissionProbability::SampleEnergy: " 
183      << " Emin= " << emin << " Emax= " << emax 
184            << "/n    E1=" << fE1 << " p1=" << p1 
185      << " probmax=" << probmax << " P2=" << fP2 << G4endl;
186   }
187 
188   CLHEP::HepRandomEngine* rndm = G4Random::getTheEngine();
189   const G4int nmax = 1000;
190   G4double ekin, gg, gmax;
191   G4int n = 0;
192   do {
193     ++n;
194     G4double q = rndm->flat();
195     if (p2 == 0.0) {
196       gmax = probmax;
197       ekin = del*q + emin;
198     } else if (q <= p1) {
199       gmax = probmax;
200       ekin = del*q/p1 + emin;
201     } else {
202       ekin = fE1 - G4Log(1.0 - (q - p1)*a1/p2)/a0;
203       x = a0*(ekin - fE1);
204       gmax = fP2;
205       if(x < blim) {
206   gmax = probmax*((x > alim) ? G4Exp(-x) : 1.0 - x*(1.0 - 0.5*x));
207       }
208     }
209     gg = ComputeProbability(ekin, eCoulomb);
210     if(pVerbose > 2) {
211       G4cout << "    " << n
212        << ". prob= " << gg << " probmax= " << probmax
213        << " Ekin= " << ekin << G4endl;
214     }
215     if((gg > gmax || n > nmax) && pVerbose > 1) {
216       G4cout << "### G4VEmissionProbability::SampleEnergy for Z= " << theZ 
217              << " A= " << theA << " Eex(MeV)=" << fExc << " p1=" << p1
218              << "\n    Warning n= " << n
219        << " prob/gmax=" << gg/gmax 
220        << " prob=" << gg << " gmax=" << gmax << " probmax=" << probmax 
221        << "\n    Ekin= " << ekin << " Emin= " << emin
222        << " Emax= " << emax << G4endl;
223     }
224   } while(gmax*rndm->flat() > gg && n < nmax);
225   G4double enew = FindRecoilExcitation(ekin);
226   if(pVerbose > 1) {
227     G4cout << "### SampleEnergy: Efinal= " 
228      << enew << " E=" << ekin << "  Eexc=" << fExcRes << G4endl;
229   }
230   return enew;
231 }
232 
233 G4double G4VEmissionProbability::FindRecoilExcitation(const G4double e)
234 {
235   G4double mass = pEvapMass + fExc;
236     
237   G4double m02 = pMass*pMass;
238   G4double m12 = mass*mass;
239   G4double m22 = pResMass*pResMass;
240   G4double mres = std::sqrt(m02 + m12 - 2.*pMass*(mass + e));
241 
242   fExcRes = mres - pResMass;
243 
244   if(pVerbose > 1) {
245     G4cout << "### FindRecoilExcitation for resZ= " 
246            << resZ << " resA= " << resA 
247            << " evaporated Z= " << theZ << " A= " << theA
248      << " Ekin= " << e << " Eexc= " << fExcRes << G4endl;
249   }
250 
251   // residual nucleus is in the ground state
252   if(fExcRes < pTolerance) {
253     fExcRes = 0.0;
254     return std::max(0.5*(m02 + m12 - m22)/pMass - mass, 0.0);
255   }
256   if(!fFD) { return e; }
257  
258   // select final state excitation
259   auto lManager = pNuclearLevelData->GetLevelManager(resZ, resA);
260   if(nullptr == lManager) { return e; }
261 
262   // levels are not known
263   if(fExcRes > lManager->MaxLevelEnergy() + pTolerance) { return e; }
264 
265   // find level
266   std::size_t idx = lManager->NearestLevelIndex(fExcRes);
267   auto level = lManager->GetLevel(idx); 
268 
269   // unstable level
270   if (level->GetTimeGamma() == 0.0) { return e; }
271 
272   // is possible to use level energy?
273   G4double elevel = lManager->LevelEnergy(idx);
274   if (std::abs(elevel - fExcRes) > pWidth || pMass < mass + pResMass + elevel) { 
275     return e;
276   }
277 
278   // long-lived level
279   G4double massR = pResMass + elevel;
280   G4double mr2 = massR*massR;
281   fExcRes = elevel;
282   return std::max(0.5*(m02 + m12 - mr2)/pMass - mass, 0.0);
283 }
284