Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 //--------------------------------------------------------------------- 28 // 29 // Geant4 class G4GEMProbability 30 // 31 // 32 // Hadronic Process: Nuclear De-excitations 33 // by V. Lara (Sept 2001) 34 // 35 // 36 // Hadronic Process: Nuclear De-excitations 37 // by V. Lara (Sept 2001) 38 // 39 // J. M. Quesada : several fixes in total GEM width 40 // J. M. Quesada 14/07/2009 bug fixed in total emission width (hbarc) 41 // J. M. Quesada (September 2009) several fixes: 42 // -level density parameter of residual calculated at its right excitation energy. 43 // -InitialLeveldensity calculated according to the right conditions of the 44 // initial excited nucleus. 45 // J. M. Quesada 19/04/2010 fix in emission probability calculation. 46 // V.Ivanchenko 20/04/2010 added usage of G4Pow and use more safe computation 47 // V.Ivanchenko 18/05/2010 trying to speedup the most slow method 48 // by usage of G4Pow, integer Z and A; moved constructor, 49 // destructor and virtual functions to source 50 51 #include "G4GEMProbability.hh" 52 #include "G4PairingCorrection.hh" 53 #include "G4NucleiProperties.hh" 54 #include "G4PhysicalConstants.hh" 55 #include "G4SystemOfUnits.hh" 56 #include "G4Log.hh" 57 58 G4GEMProbability:: G4GEMProbability(G4int anA, G4int aZ, G4double aSpin) 59 : G4VEmissionProbability(aZ, anA), Spin(aSpin), 60 theCoulombBarrierPtr(nullptr) 61 { 62 theEvapLDPptr = new G4EvaporationLevelDensityParameter; 63 fG4pow = G4Pow::GetInstance(); 64 fPlanck= CLHEP::hbar_Planck*fG4pow->logZ(2); 65 fNucData = G4NuclearLevelData::GetInstance(); 66 } 67 68 G4GEMProbability::~G4GEMProbability() 69 { 70 delete theEvapLDPptr; 71 } 72 73 G4double G4GEMProbability::EmissionProbability(const G4Fragment & fragment, 74 G4double MaximalKineticEnergy) 75 { 76 G4double probability = 0.0; 77 78 if (MaximalKineticEnergy > 0.0 && fragment.GetExcitationEnergy() > 0.0) { 79 G4double CoulombBarrier = GetCoulombBarrier(fragment); 80 G4double InitialLevelDensity = ComputeInitialLevelDensity(fragment); 81 G4double Ux, UxSqrt, UxLog; 82 PrecomputeResidualQuantities(fragment, Ux, UxSqrt, UxLog); 83 84 probability = 85 CalcProbability(fragment,MaximalKineticEnergy,CoulombBarrier,Spin, 86 InitialLevelDensity,Ux,UxSqrt,UxLog); 87 88 // Next there is a loop over excited states for this channel 89 // summing probabilities 90 std::size_t nn = ExcitEnergies.size(); 91 if (0 < nn) { 92 for (std::size_t i = 0; i <nn; ++i) { 93 // substract excitation energies 94 G4double Tmax = MaximalKineticEnergy - ExcitEnergies[i]; 95 if (Tmax > 0.0) { 96 G4double width = CalcProbability(fragment,Tmax,CoulombBarrier,ExcitSpins[i], 97 InitialLevelDensity,Ux,UxSqrt,UxLog); 98 //JMQ April 2010 added condition to prevent reported crash 99 // update probability 100 if (width > 0. && fPlanck < width*ExcitLifetimes[i]) { 101 probability += width; 102 } 103 } 104 } 105 } 106 } 107 // Normalization = probability; 108 return probability; 109 } 110 111 G4double G4GEMProbability::ComputeInitialLevelDensity(const G4Fragment & fragment) const 112 { 113 G4int A = fragment.GetA_asInt(); 114 G4int Z = fragment.GetZ_asInt(); 115 G4double U = fragment.GetExcitationEnergy(); 116 117 // ***PARENT*** 118 //JMQ (September 2009) the following quantities refer to the PARENT: 119 120 G4double deltaCN = fNucData->GetPairingCorrection(Z, A); 121 G4double aCN = theEvapLDPptr->LevelDensityParameter(A, Z, U-deltaCN); 122 G4double UxCN = (2.5 + 150.0/G4double(A))*MeV; 123 G4double ExCN = UxCN + deltaCN; 124 G4double TCN = 1.0/(std::sqrt(aCN/UxCN) - 1.5/UxCN); 125 // ***end PARENT*** 126 127 //JMQ 160909 fix: initial level density must be calculated according to the 128 // conditions at the initial compound nucleus 129 // (it has been removed from previous "if" for the residual) 130 131 G4double InitialLevelDensity; 132 if ( U < ExCN ) 133 { 134 //JMQ fixed bug in units 135 //VI moved the computation here 136 G4double E0CN = ExCN - TCN*(G4Log(TCN/MeV) - 0.25*G4Log(aCN*MeV) 137 - 1.25*G4Log(UxCN/MeV) 138 + 2.0*std::sqrt(aCN*UxCN)); 139 140 InitialLevelDensity = (pi/12.0)*G4Exp((U-E0CN)/TCN)/TCN; 141 } 142 else 143 { 144 //VI speedup 145 G4double x = U-deltaCN; 146 G4double x1 = std::sqrt(aCN*x); 147 148 InitialLevelDensity = (pi/12.0)*G4Exp(2*x1)/(x*std::sqrt(x1)); 149 } 150 151 return InitialLevelDensity; 152 } 153 154 void G4GEMProbability::PrecomputeResidualQuantities(const G4Fragment & fragment, 155 G4double &Ux, 156 G4double &UxSqrt, 157 G4double &UxLog) const 158 { 159 G4int A = fragment.GetA_asInt(); 160 G4int ResidualA = A - theA; 161 162 Ux = (2.5 + 150.0/G4double(ResidualA))*MeV; 163 UxSqrt = std::sqrt(Ux); 164 UxLog = G4Log(Ux/MeV); 165 } 166 167 G4double G4GEMProbability::CalcProbability(const G4Fragment & fragment, 168 G4double MaximalKineticEnergy, 169 G4double V, G4double spin, 170 G4double InitialLevelDensity, 171 G4double Ux, G4double UxSqrt, 172 G4double UxLog) const 173 174 // Calculate integrated probability (width) for evaporation channel 175 { 176 G4int A = fragment.GetA_asInt(); 177 G4int Z = fragment.GetZ_asInt(); 178 179 G4int ResidualA = A - theA; 180 G4int ResidualZ = Z - theZ; 181 182 G4double NuclearMass = fragment.ComputeGroundStateMass(theZ, theA); 183 184 G4double Alpha = CalcAlphaParam(fragment); 185 G4double Beta = CalcBetaParam(fragment); 186 187 // ***RESIDUAL*** 188 //JMQ (September 2009) the following quantities refer to the RESIDUAL: 189 190 G4double delta0 = fNucData->GetPairingCorrection(ResidualZ, ResidualA); 191 192 G4double a = theEvapLDPptr-> 193 LevelDensityParameter(ResidualA,ResidualZ,MaximalKineticEnergy+V-delta0); 194 G4double aSqrt = std::sqrt(a); 195 G4double Ex = Ux + delta0; 196 G4double T = 1.0/(aSqrt/UxSqrt - 1.5/Ux); 197 //JMQ fixed bug in units 198 G4double E0 = Ex - T*(G4Log(T/MeV) - G4Log(a*MeV)/4.0 199 - 1.25*UxLog + 2.0*aSqrt*UxSqrt); 200 // ***end RESIDUAL *** 201 202 G4double Width; 203 G4double t = MaximalKineticEnergy/T; 204 if ( MaximalKineticEnergy < Ex ) { 205 //JMQ 190709 bug in I1 fixed (T was missing) 206 Width = (I1(t,t)*T + (Beta+V)*I0(t))/G4Exp(E0/T); 207 } else { 208 209 //VI minor speedup 210 G4double expE0T = G4Exp(E0/T); 211 static const G4double sqrt2 = std::sqrt(2.0); 212 213 G4double tx = Ex/T; 214 G4double s0 = 2.0*std::sqrt(a*(MaximalKineticEnergy-delta0)); 215 G4double sx = 2.0*std::sqrt(a*(Ex-delta0)); 216 // VI: protection against FPE exception 217 if(s0 > 350.) { s0 = 350.; } 218 Width = I1(t,tx)*T/expE0T + I3(s0,sx)*G4Exp(s0)/(sqrt2*a); 219 220 // VI this cannot happen! 221 // For charged particles (Beta+V) = 0 beacuse Beta = -V 222 //if (theZ == 0) { 223 // Width += (Beta+V)*(I0(tx)/expE0T + 2.0*sqrt2*I2(s0,sx)*G4Exp(s0)); 224 //} 225 } 226 227 //JMQ 14/07/2009 BIG BUG : NuclearMass is in MeV => hbarc instead of 228 // hbar_planck must be used 229 // G4double g = (2.0*spin+1.0)*NuclearMass/(pi2* hbar_Planck*hbar_Planck); 230 G4double gg = (2.0*spin+1.0)*NuclearMass/(pi2* hbarc*hbarc); 231 232 //JMQ 190709 fix on Rb and geometrical cross sections according to 233 // Furihata's paper (JAERI-Data/Code 2001-105, p6) 234 G4double Rb = 0.0; 235 if (theA > 4) 236 { 237 G4double Ad = fG4pow->Z13(ResidualA); 238 G4double Aj = fG4pow->Z13(theA); 239 Rb = 1.12*(Aj + Ad) - 0.86*((Aj+Ad)/(Aj*Ad))+2.85; 240 Rb *= fermi; 241 } 242 else if (theA>1) 243 { 244 G4double Ad = fG4pow->Z13(ResidualA); 245 G4double Aj = fG4pow->Z13(theA); 246 Rb=1.5*(Aj+Ad)*fermi; 247 } 248 else 249 { 250 G4double Ad = fG4pow->Z13(ResidualA); 251 Rb = 1.5*Ad*fermi; 252 } 253 G4double GeometricalXS = pi*Rb*Rb; 254 //end of JMQ fix on Rb by 190709 255 256 //JMQ 190709 BUG : pi instead of sqrt(pi) must be here according 257 // to Furihata's report: 258 Width *= pi*gg*GeometricalXS*Alpha/(12.0*InitialLevelDensity); 259 260 return Width; 261 } 262 263 G4double G4GEMProbability::I3(G4double s0, G4double sx) const 264 { 265 G4double s2 = s0*s0; 266 G4double sx2 = sx*sx; 267 G4double S = 1.0/std::sqrt(s0); 268 G4double S2 = S*S; 269 G4double Sx = 1.0/std::sqrt(sx); 270 G4double Sx2 = Sx*Sx; 271 272 G4double p1 = S *(2.0 + S2 *( 4.0 + S2 *( 13.5 + S2 *( 60.0 + S2 * 325.125 )))); 273 G4double p2 = Sx*Sx2 *( 274 (s2-sx2) + Sx2 *( 275 (1.5*s2+0.5*sx2) + Sx2 *( 276 (3.75*s2+0.25*sx2) + Sx2 *( 277 (12.875*s2+0.625*sx2) + Sx2 *( 278 (59.0625*s2+0.9375*sx2) + Sx2 *(324.8*s2+3.28*sx2)))))); 279 280 p2 *= G4Exp(sx-s0); 281 282 return p1-p2; 283 } 284 285 void G4GEMProbability::Dump() const 286 { 287 G4double mass = G4NucleiProperties::GetNuclearMass(theA, theZ); 288 G4double efermi = 0.0; 289 if(theA > 1) { 290 efermi = G4NucleiProperties::GetNuclearMass(theA-1, theZ) 291 + neutron_mass_c2 - mass; 292 } 293 std::size_t nlev = ExcitEnergies.size(); 294 G4cout << "GEM: List of Excited States for Isotope Z= " 295 << theZ << " A= " << theA << " Nlevels= " << nlev 296 << " Efermi(MeV)= " << efermi 297 << G4endl; 298 for(std::size_t i=0; i< nlev; ++i) { 299 G4cout << "Z= " << theZ << " A= " << theA 300 << " Mass(GeV)= " << mass/GeV 301 << " Eexc(MeV)= " << ExcitEnergies[i] 302 << " Time(ns)= " << ExcitLifetimes[i]/ns 303 << G4endl; 304 } 305 G4cout << G4endl; 306 } 307