Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 27 // G4 Low energy model: n-p scattering 28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch 29 30 // 11-OCT-2007 F.W. Jones: removed erroneous code for identity 31 // exchange of particles. 32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony Kwan TRIUMF 33 34 #include "G4LEnp.hh" 35 #include "G4PhysicalConstants.hh" 36 #include "G4SystemOfUnits.hh" 37 #include "Randomize.hh" 38 #include "G4ios.hh" 39 40 // Initialization of static data arrays: 41 #include "G4LEnpData.hh" 42 #include "Randomize.hh" 43 44 #include "G4PhysicsModelCatalog.hh" 45 46 47 G4LEnp::G4LEnp(): 48 G4HadronElastic("G4LEnp") // G4HadronicInteraction("G4LEnp") 49 { 50 secID = G4PhysicsModelCatalog::GetModelID( "model_" + GetModelName() ); 51 // theParticleChange.SetNumberOfSecondaries(1); 52 53 // SetMinEnergy(10.*MeV); 54 // SetMaxEnergy(1200.*MeV); 55 SetMinEnergy(0.); 56 SetMaxEnergy(5.*GeV); 57 } 58 59 G4LEnp::~G4LEnp() 60 { 61 theParticleChange.Clear(); 62 } 63 64 G4HadFinalState* 65 G4LEnp::ApplyYourself(const G4HadProjectile& aTrack, G4Nucleus& targetNucleus) 66 { 67 theParticleChange.Clear(); 68 const G4HadProjectile* aParticle = &aTrack; 69 70 G4double P = aParticle->GetTotalMomentum(); 71 G4double Px = aParticle->Get4Momentum().x(); 72 G4double Py = aParticle->Get4Momentum().y(); 73 G4double Pz = aParticle->Get4Momentum().z(); 74 G4double ek = aParticle->GetKineticEnergy(); 75 G4ThreeVector theInitial = aParticle->Get4Momentum().vect(); 76 77 if (verboseLevel > 1) { 78 G4double E = aParticle->GetTotalEnergy(); 79 G4double E0 = aParticle->GetDefinition()->GetPDGMass(); 80 G4double Q = aParticle->GetDefinition()->GetPDGCharge(); 81 G4int A = targetNucleus.GetA_asInt(); 82 G4int Z = targetNucleus.GetZ_asInt(); 83 G4cout << "G4LEnp:ApplyYourself: incident particle: " 84 << aParticle->GetDefinition()->GetParticleName() << G4endl; 85 G4cout << "P = " << P/GeV << " GeV/c" 86 << ", Px = " << Px/GeV << " GeV/c" 87 << ", Py = " << Py/GeV << " GeV/c" 88 << ", Pz = " << Pz/GeV << " GeV/c" << G4endl; 89 G4cout << "E = " << E/GeV << " GeV" 90 << ", kinetic energy = " << ek/GeV << " GeV" 91 << ", mass = " << E0/GeV << " GeV" 92 << ", charge = " << Q << G4endl; 93 G4cout << "G4LEnp:ApplyYourself: material:" << G4endl; 94 G4cout << "A = " << A 95 << ", Z = " << Z 96 << ", atomic mass " 97 << G4Proton::Proton()->GetPDGMass()/GeV << "GeV" 98 << G4endl; 99 // 100 // GHEISHA ADD operation to get total energy, mass, charge 101 // 102 E += proton_mass_c2; 103 G4double E02 = E*E - P*P; 104 E0 = std::sqrt(std::abs(E02)); 105 if (E02 < 0)E0 *= -1; 106 Q += Z; 107 G4cout << "G4LEnp:ApplyYourself: total:" << G4endl; 108 G4cout << "E = " << E/GeV << " GeV" 109 << ", mass = " << E0/GeV << " GeV" 110 << ", charge = " << Q << G4endl; 111 } 112 113 // Find energy bin 114 115 G4int je1 = 0; 116 G4int je2 = NENERGY - 1; 117 ek = ek/GeV; 118 do { 119 G4int midBin = (je1 + je2)/2; 120 if (ek < elab[midBin]) 121 je2 = midBin; 122 else 123 je1 = midBin; 124 } while (je2 - je1 > 1); /* Loop checking, 10.08.2015, A.Ribon */ 125 G4double delab = elab[je2] - elab[je1]; 126 127 // Sample the angle 128 129 G4double sample = G4UniformRand(); 130 G4int ke1 = 0; 131 G4int ke2 = NANGLE - 1; 132 G4double dsig = sig[je2][0] - sig[je1][0]; 133 G4double rc = dsig/delab; 134 G4double b = sig[je1][0] - rc*elab[je1]; 135 G4double sigint1 = rc*ek + b; 136 G4double sigint2 = 0.; 137 138 if (verboseLevel > 1) { 139 G4cout << "sample=" << sample << G4endl 140 << ke1 << " " << ke2 << " " 141 << sigint1 << " " << sigint2 << G4endl; 142 } 143 do { 144 G4int midBin = (ke1 + ke2)/2; 145 dsig = sig[je2][midBin] - sig[je1][midBin]; 146 rc = dsig/delab; 147 b = sig[je1][midBin] - rc*elab[je1]; 148 G4double sigint = rc*ek + b; 149 if (sample < sigint) { 150 ke2 = midBin; 151 sigint2 = sigint; 152 } 153 else { 154 ke1 = midBin; 155 sigint1 = sigint; 156 } 157 if (verboseLevel > 1) { 158 G4cout << ke1 << " " << ke2 << " " 159 << sigint1 << " " << sigint2 << G4endl; 160 } 161 } while (ke2 - ke1 > 1); /* Loop checking, 10.08.2015, A.Ribon */ 162 163 dsig = sigint2 - sigint1; 164 rc = 1./dsig; 165 b = ke1 - rc*sigint1; 166 G4double kint = rc*sample + b; 167 G4double theta = (0.5 + kint)*pi/180.; 168 169 if (verboseLevel > 1) { 170 G4cout << " energy bin " << je1 << " energy=" << elab[je1] << G4endl; 171 G4cout << " angle bin " << kint << " angle=" << theta/degree << G4endl; 172 } 173 174 // Get the target particle 175 176 G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle(); 177 178 G4double E1 = aParticle->GetTotalEnergy(); 179 G4double M1 = aParticle->GetDefinition()->GetPDGMass(); 180 G4double E2 = targetParticle->GetTotalEnergy(); 181 G4double M2 = targetParticle->GetDefinition()->GetPDGMass(); 182 G4double totalEnergy = E1 + E2; 183 G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P); 184 185 // Transform into centre of mass system 186 187 G4double px = (M2/pseudoMass)*Px; 188 G4double py = (M2/pseudoMass)*Py; 189 G4double pz = (M2/pseudoMass)*Pz; 190 G4double p = std::sqrt(px*px + py*py + pz*pz); 191 192 if (verboseLevel > 1) { 193 G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl; 194 G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl; 195 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 196 << pz/GeV << " " << p/GeV << G4endl; 197 } 198 199 // First scatter w.r.t. Z axis 200 G4double phi = G4UniformRand()*twopi; 201 G4double pxnew = p*std::sin(theta)*std::cos(phi); 202 G4double pynew = p*std::sin(theta)*std::sin(phi); 203 G4double pznew = p*std::cos(theta); 204 205 // Rotate according to the direction of the incident particle 206 if (px*px + py*py > 0) { 207 G4double cost, sint, ph, cosp, sinp; 208 cost = pz/p; 209 sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/p)/2; 210 py < 0 ? ph = 3*halfpi : ph = halfpi; 211 if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px); 212 cosp = std::cos(ph); 213 sinp = std::sin(ph); 214 px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew); 215 py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew); 216 pz = (-sint*pxnew + cost*pznew); 217 } 218 else { 219 px = pxnew; 220 py = pynew; 221 pz = pznew; 222 } 223 224 if (verboseLevel > 1) { 225 G4cout << " AFTER SCATTER..." << G4endl; 226 G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " " 227 << pz/GeV << " " << p/GeV << G4endl; 228 } 229 230 // Transform to lab system 231 232 G4double E1pM2 = E1 + M2; 233 G4double betaCM = P/E1pM2; 234 G4double betaCMx = Px/E1pM2; 235 G4double betaCMy = Py/E1pM2; 236 G4double betaCMz = Pz/E1pM2; 237 G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P); 238 239 if (verboseLevel > 1) { 240 G4cout << " betaCM " << betaCMx << " " << betaCMy << " " 241 << betaCMz << " " << betaCM << G4endl; 242 G4cout << " gammaCM " << gammaCM << G4endl; 243 } 244 245 // Now following GLOREN... 246 247 G4double BETA[5], PA[5], PB[5]; 248 BETA[1] = -betaCMx; 249 BETA[2] = -betaCMy; 250 BETA[3] = -betaCMz; 251 BETA[4] = gammaCM; 252 253 //The incident particle... 254 255 PA[1] = px; 256 PA[2] = py; 257 PA[3] = pz; 258 PA[4] = std::sqrt(M1*M1 + p*p); 259 260 G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 261 G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 262 263 PB[1] = PA[1] + BPGAM * BETA[1]; 264 PB[2] = PA[2] + BPGAM * BETA[2]; 265 PB[3] = PA[3] + BPGAM * BETA[3]; 266 PB[4] = (PA[4] - BETPA) * BETA[4]; 267 268 G4DynamicParticle* newP = new G4DynamicParticle; 269 newP->SetDefinition(aParticle->GetDefinition()); 270 newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 271 272 //The target particle... 273 274 PA[1] = -px; 275 PA[2] = -py; 276 PA[3] = -pz; 277 PA[4] = std::sqrt(M2*M2 + p*p); 278 279 BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3]; 280 BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4]; 281 282 PB[1] = PA[1] + BPGAM * BETA[1]; 283 PB[2] = PA[2] + BPGAM * BETA[2]; 284 PB[3] = PA[3] + BPGAM * BETA[3]; 285 PB[4] = (PA[4] - BETPA) * BETA[4]; 286 287 targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3])); 288 289 if (verboseLevel > 1) { 290 G4cout << " particle 1 momentum in LAB " 291 << newP->GetMomentum()*(1./GeV) 292 << " " << newP->GetTotalMomentum()/GeV << G4endl; 293 G4cout << " particle 2 momentum in LAB " 294 << targetParticle->GetMomentum()*(1./GeV) 295 << " " << targetParticle->GetTotalMomentum()/GeV << G4endl; 296 G4cout << " TOTAL momentum in LAB " 297 << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV) 298 << " " 299 << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV 300 << G4endl; 301 } 302 303 theParticleChange.SetMomentumChange(newP->GetMomentumDirection()); 304 theParticleChange.SetEnergyChange(newP->GetKineticEnergy()); 305 delete newP; 306 theParticleChange.AddSecondary(targetParticle, secID); 307 308 return &theParticleChange; 309 } 310 311 //////////////////////////////////////////////////////////////////// 312 // 313 // sample momentum transfer using Lab. momentum 314 315 G4double G4LEnp::SampleInvariantT(const G4ParticleDefinition* p, 316 G4double plab, G4int , G4int ) 317 { 318 G4double nMass = p->GetPDGMass(); // 939.565346*MeV; 319 G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass; 320 321 // Find energy bin 322 323 G4int je1 = 0; 324 G4int je2 = NENERGY - 1; 325 ek = ek/GeV; 326 327 do 328 { 329 G4int midBin = (je1 + je2)/2; 330 if (ek < elab[midBin]) 331 je2 = midBin; 332 else 333 je1 = midBin; 334 } while (je2 - je1 > 1); /* Loop checking, 10.08.2015, A.Ribon */ 335 336 G4double delab = elab[je2] - elab[je1]; 337 338 // Sample the angle 339 340 G4double sample = G4UniformRand(); 341 G4int ke1 = 0; 342 G4int ke2 = NANGLE - 1; 343 G4double dsig = sig[je2][0] - sig[je1][0]; 344 G4double rc = dsig/delab; 345 G4double b = sig[je1][0] - rc*elab[je1]; 346 G4double sigint1 = rc*ek + b; 347 G4double sigint2 = 0.; 348 349 do 350 { 351 G4int midBin = (ke1 + ke2)/2; 352 dsig = sig[je2][midBin] - sig[je1][midBin]; 353 rc = dsig/delab; 354 b = sig[je1][midBin] - rc*elab[je1]; 355 G4double sigint = rc*ek + b; 356 357 if (sample < sigint) 358 { 359 ke2 = midBin; 360 sigint2 = sigint; 361 } 362 else 363 { 364 ke1 = midBin; 365 sigint1 = sigint; 366 } 367 } while (ke2 - ke1 > 1); /* Loop checking, 10.08.2015, A.Ribon */ 368 369 dsig = sigint2 - sigint1; 370 rc = 1./dsig; 371 b = ke1 - rc*sigint1; 372 373 G4double kint = rc*sample + b; 374 G4double theta = (0.5 + kint)*pi/180.; 375 G4double t = 0.5*plab*plab*(1-std::cos(theta)); 376 377 return t; 378 } 379 380 // end of file 381