Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/binary_cascade/src/G4RKPropagation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //      GEANT 4 class implementation file
 29 //
 30 //      CERN, Geneva, Switzerland
 31 //
 32 //      File name:     G4RKPropagation.cc
 33 //
 34 //      Author:        Alessandro Brunengo (Alessandro.Brunengo@ge.infn.it)
 35 //
 36 //      Creation date: 6 June 2000
 37 // -------------------------------------------------------------------
 38 #include "G4RKPropagation.hh"
 39 #include "G4PhysicalConstants.hh"
 40 #include "G4SystemOfUnits.hh"
 41 // nuclear fields
 42 #include "G4VNuclearField.hh"
 43 #include "G4ProtonField.hh"
 44 #include "G4NeutronField.hh"
 45 #include "G4AntiProtonField.hh"
 46 #include "G4KaonPlusField.hh"
 47 #include "G4KaonMinusField.hh"
 48 #include "G4KaonZeroField.hh"
 49 #include "G4PionPlusField.hh"
 50 #include "G4PionMinusField.hh"
 51 #include "G4PionZeroField.hh"
 52 #include "G4SigmaPlusField.hh"
 53 #include "G4SigmaMinusField.hh"
 54 #include "G4SigmaZeroField.hh"
 55 // particles properties
 56 #include "G4Proton.hh"
 57 #include "G4Neutron.hh"
 58 #include "G4AntiProton.hh"
 59 #include "G4KaonPlus.hh"
 60 #include "G4KaonMinus.hh"
 61 #include "G4KaonZero.hh"
 62 #include "G4PionPlus.hh"
 63 #include "G4PionMinus.hh"
 64 #include "G4PionZero.hh"
 65 #include "G4SigmaPlus.hh"
 66 #include "G4SigmaMinus.hh"
 67 #include "G4SigmaZero.hh"
 68 
 69 #include "globals.hh"
 70 
 71 #include "G4KM_OpticalEqRhs.hh"
 72 #include "G4KM_NucleonEqRhs.hh"
 73 #include "G4ClassicalRK4.hh"
 74 #include "G4MagIntegratorDriver.hh"
 75 
 76 #include "G4LorentzRotation.hh"
 77 
 78 // unsigned EncodingHashFun(const G4int& aEncoding);
 79 
 80 G4RKPropagation::G4RKPropagation() :
 81 theOuterRadius(0), theNucleus(0),
 82 theFieldMap(0), theEquationMap(0),
 83 theField(0)
 84 { }
 85 
 86 
 87 G4RKPropagation::~G4RKPropagation()
 88 {
 89    // free theFieldMap memory
 90    if(theFieldMap) delete_FieldsAndMap(theFieldMap);
 91 
 92    // free theEquationMap memory
 93    if(theEquationMap) delete_EquationsAndMap(theEquationMap);
 94 
 95    if (theField) delete theField;
 96 }
 97 
 98 //----------------------------------------------------------------------------
 99 void G4RKPropagation::Init(G4V3DNucleus * nucleus)
100 //----------------------------------------------------------------------------
101 {
102 
103    // free theFieldMap memory
104    if(theFieldMap) delete_FieldsAndMap(theFieldMap);
105 
106    // free theEquationMap memory
107    if(theEquationMap) delete_EquationsAndMap(theEquationMap);
108 
109    if (theField) delete theField;
110 
111    // Initialize the nuclear field map.
112    theNucleus = nucleus;
113    theOuterRadius = theNucleus->GetOuterRadius();
114 
115    theFieldMap = new std::map <G4int, G4VNuclearField*, std::less<G4int> >;
116 
117    (*theFieldMap)[G4Proton::Proton()->GetPDGEncoding()] = new G4ProtonField(theNucleus);
118    (*theFieldMap)[G4Neutron::Neutron()->GetPDGEncoding()] = new G4NeutronField(theNucleus);
119    (*theFieldMap)[G4AntiProton::AntiProton()->GetPDGEncoding()] = new G4AntiProtonField(theNucleus);
120    (*theFieldMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()] = new G4KaonPlusField(theNucleus);
121    (*theFieldMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()] = new G4KaonMinusField(theNucleus);
122    (*theFieldMap)[G4KaonZero::KaonZero()->GetPDGEncoding()] = new G4KaonZeroField(theNucleus);
123    (*theFieldMap)[G4PionPlus::PionPlus()->GetPDGEncoding()] = new G4PionPlusField(theNucleus);
124    (*theFieldMap)[G4PionMinus::PionMinus()->GetPDGEncoding()] = new G4PionMinusField(theNucleus);
125    (*theFieldMap)[G4PionZero::PionZero()->GetPDGEncoding()] = new G4PionZeroField(theNucleus);
126    (*theFieldMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()] = new G4SigmaPlusField(theNucleus);
127    (*theFieldMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()] = new G4SigmaMinusField(theNucleus);
128    (*theFieldMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()] = new G4SigmaZeroField(theNucleus);
129 
130    theEquationMap = new std::map <G4int, G4Mag_EqRhs*, std::less<G4int> >;
131 
132    // theField needed by the design of G4Mag_eqRhs
133    theField = new G4KM_DummyField;    //Field not needed for integration
134    G4KM_OpticalEqRhs * opticalEq;
135    G4KM_NucleonEqRhs * nucleonEq;
136    G4double mass;
137    G4double opticalCoeff;
138 
139    nucleonEq = new G4KM_NucleonEqRhs(theField, theNucleus);
140    mass = G4Proton::Proton()->GetPDGMass();
141    nucleonEq->SetMass(mass);
142    (*theEquationMap)[G4Proton::Proton()->GetPDGEncoding()] = nucleonEq;
143 
144    nucleonEq = new G4KM_NucleonEqRhs(theField, theNucleus);
145    mass = G4Neutron::Neutron()->GetPDGMass();
146    nucleonEq->SetMass(mass);
147    (*theEquationMap)[G4Neutron::Neutron()->GetPDGEncoding()] = nucleonEq;
148 
149    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
150    mass = G4AntiProton::AntiProton()->GetPDGMass();
151    opticalCoeff =
152          (*theFieldMap)[G4AntiProton::AntiProton()->GetPDGEncoding()]->GetCoeff();
153    opticalEq->SetFactor(mass,opticalCoeff);
154    (*theEquationMap)[G4AntiProton::AntiProton()->GetPDGEncoding()] = opticalEq;
155 
156    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
157    mass = G4KaonPlus::KaonPlus()->GetPDGMass();
158    opticalCoeff =
159          (*theFieldMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()]->GetCoeff();
160    opticalEq->SetFactor(mass,opticalCoeff);
161    (*theEquationMap)[G4KaonPlus::KaonPlus()->GetPDGEncoding()] = opticalEq;
162 
163    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
164    mass = G4KaonMinus::KaonMinus()->GetPDGMass();
165    opticalCoeff =
166          (*theFieldMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()]->GetCoeff();
167    opticalEq->SetFactor(mass,opticalCoeff);
168    (*theEquationMap)[G4KaonMinus::KaonMinus()->GetPDGEncoding()] = opticalEq;
169 
170    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
171    mass = G4KaonZero::KaonZero()->GetPDGMass();
172    opticalCoeff =
173          (*theFieldMap)[G4KaonZero::KaonZero()->GetPDGEncoding()]->GetCoeff();
174    opticalEq->SetFactor(mass,opticalCoeff);
175    (*theEquationMap)[G4KaonZero::KaonZero()->GetPDGEncoding()] = opticalEq;
176 
177    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
178    mass = G4PionPlus::PionPlus()->GetPDGMass();
179    opticalCoeff =
180          (*theFieldMap)[G4PionPlus::PionPlus()->GetPDGEncoding()]->GetCoeff();
181    opticalEq->SetFactor(mass,opticalCoeff);
182    (*theEquationMap)[G4PionPlus::PionPlus()->GetPDGEncoding()] = opticalEq;
183 
184    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
185    mass = G4PionMinus::PionMinus()->GetPDGMass();
186    opticalCoeff =
187          (*theFieldMap)[G4PionMinus::PionMinus()->GetPDGEncoding()]->GetCoeff();
188    opticalEq->SetFactor(mass,opticalCoeff);
189    (*theEquationMap)[G4PionMinus::PionMinus()->GetPDGEncoding()] = opticalEq;
190 
191    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
192    mass = G4PionZero::PionZero()->GetPDGMass();
193    opticalCoeff =
194          (*theFieldMap)[G4PionZero::PionZero()->GetPDGEncoding()]->GetCoeff();
195    opticalEq->SetFactor(mass,opticalCoeff);
196    (*theEquationMap)[G4PionZero::PionZero()->GetPDGEncoding()] = opticalEq;
197 
198    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
199    mass = G4SigmaPlus::SigmaPlus()->GetPDGMass();
200    opticalCoeff =
201          (*theFieldMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()]->GetCoeff();
202    opticalEq->SetFactor(mass,opticalCoeff);
203    (*theEquationMap)[G4SigmaPlus::SigmaPlus()->GetPDGEncoding()] = opticalEq;
204 
205    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
206    mass = G4SigmaMinus::SigmaMinus()->GetPDGMass();
207    opticalCoeff =
208          (*theFieldMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()]->GetCoeff();
209    opticalEq->SetFactor(mass,opticalCoeff);
210    (*theEquationMap)[G4SigmaMinus::SigmaMinus()->GetPDGEncoding()] = opticalEq;
211 
212    opticalEq = new G4KM_OpticalEqRhs(theField, theNucleus);
213    mass = G4SigmaZero::SigmaZero()->GetPDGMass();
214    opticalCoeff =
215          (*theFieldMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()]->GetCoeff();
216    opticalEq->SetFactor(mass,opticalCoeff);
217    (*theEquationMap)[G4SigmaZero::SigmaZero()->GetPDGEncoding()] = opticalEq;
218 }
219 
220 
221 //#define debug_1_RKPropagation 1
222 //----------------------------------------------------------------------------
223 void G4RKPropagation::Transport(G4KineticTrackVector & active,
224       //----------------------------------------------------------------------------
225       const G4KineticTrackVector &,
226       G4double timeStep)
227 {
228    //  reset momentum transfer to field
229    theMomentumTranfer=G4ThreeVector(0,0,0);
230 
231    // Loop over tracks
232 
233    std::vector<G4KineticTrack *>::iterator i;
234    for(i = active.begin(); i != active.end(); ++i)
235    {
236       G4double currTimeStep = timeStep;
237       G4KineticTrack * kt = *i;
238       G4int encoding = kt->GetDefinition()->GetPDGEncoding();
239 
240       std::map <G4int, G4VNuclearField*, std::less<G4int> >::iterator fieldIter= theFieldMap->find(encoding);
241 
242       G4VNuclearField* currentField=0;
243       if ( fieldIter != theFieldMap->end() ) currentField=fieldIter->second;
244 
245       // debug
246       //    if ( timeStep > 1e30 ) {
247       //  G4cout << " Name :" << kt->GetDefinition()->GetParticleName() << G4endl;
248       //    }
249 
250       // Get the time of intersections with the nucleus surface.
251       G4double t_enter, t_leave;
252       // if the particle does not intersecate with the nucleus go to next particle
253       if(!GetSphereIntersectionTimes(kt, t_enter, t_leave))
254       {
255          kt->SetState(G4KineticTrack::miss_nucleus);
256          continue;
257       }
258 
259 
260 #ifdef debug_1_RKPropagation
261       G4cout <<" kt,timeStep, Intersection times tenter, tleave  "
262             <<kt<< " / state= " <<kt->GetState() <<" / " <<" "<< currTimeStep << " / " << t_enter << " / " << t_leave <<G4endl;
263 #endif
264 
265       // if the particle is already outside nucleus go to next  @@GF should never happen? check!
266       //  does happen for particles added as late....
267       //     if(t_leave < 0 )
268       //     {
269       //        throw G4HadronicException(__FILE__, __LINE__, "G4RKPropagation:: Attempt to track particle past a  nucleus");
270       //        continue;
271       //     }
272 
273       // Apply a straight line propagation for particle types
274       // not included in the model
275       if( ! currentField )
276       {
277          if(currTimeStep == DBL_MAX)currTimeStep = t_leave*1.05;
278          FreeTransport(kt, currTimeStep);
279          if ( currTimeStep >= t_leave )
280          {
281             if ( kt->GetState() == G4KineticTrack::inside )
282             { kt->SetState(G4KineticTrack::gone_out); }
283             else
284             { kt->SetState(G4KineticTrack::miss_nucleus);}
285          } else if (kt->GetState() == G4KineticTrack::outside && currTimeStep >= t_enter ){
286             kt->SetState(G4KineticTrack::inside);
287          }
288 
289          continue;
290       }
291 
292       if(t_enter > 0)  // the particle is out. Transport free to the surface
293       {
294          if(t_enter > currTimeStep)  // the particle won't enter the nucleus
295          {
296             FreeTransport(kt, currTimeStep);
297             continue;
298          }
299          else
300          {
301             FreeTransport(kt, t_enter);   // go to surface
302             currTimeStep -= t_enter;
303             t_leave      -= t_enter;  // time left to leave nucleus
304             // on the surface the particle loose the barrier energy
305             //  G4double newE = mom.e()-(*theFieldMap)[encoding]->GetBarrier();
306             //     GetField = Barrier + FermiPotential
307             G4double newE = kt->GetTrackingMomentum().e()-currentField->GetField(kt->GetPosition());
308 
309             if(newE <= kt->GetActualMass())  // the particle cannot enter the nucleus
310             {
311                // FixMe: should be "pushed back?"
312                //      for the moment take it past the nucleus, so we'll not worry next time..
313                FreeTransport(kt, 1.1*t_leave);   // take past nucleus
314                kt->SetState(G4KineticTrack::miss_nucleus);
315                //    G4cout << "G4RKPropagation: Warning particle cannot enter Nucleus :" << G4endl;
316                //    G4cout << " enter nucleus, E out/in: " << kt->GetTrackingMomentum().e() << " / " << newE <<G4endl;
317                //    G4cout << " the Field "<< currentField->GetField(kt->GetPosition()) << " "<< kt->GetPosition()<<G4endl;
318                //      G4cout << " the particle "<<kt->GetDefinition()->GetParticleName()<<G4endl;
319                continue;
320             }
321             //
322             G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
323             G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
324             G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
325             G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
326             new4Mom*=G4LorentzRotation(boost);
327             kt->SetTrackingMomentum(new4Mom);
328             kt->SetState(G4KineticTrack::inside);
329 
330             /*
331      G4cout <<" Enter Nucleus - E/Field/Sum: " <<kt->GetTrackingMomentum().e() << " / "
332          << (*theFieldMap)[encoding]->GetField(kt->GetPosition()) << " / "
333      << kt->GetTrackingMomentum().e()-currentField->GetField(kt->GetPosition())
334      << G4endl
335      << " Barrier / field just inside nucleus (0.9999*kt->GetPosition())"
336      << (*theFieldMap)[encoding]->GetBarrier() << " / "
337      << (*theFieldMap)[encoding]->GetField(0.9999*kt->GetPosition())
338      << G4endl;
339              */
340          }
341       }
342 
343       // FixMe: should I add a control on theCutOnP here?
344       // Transport the particle into the nucleus
345       //       G4cerr << "RKPropagation t_leave, curTimeStep " <<t_leave << " " <<currTimeStep<<G4endl;
346       G4bool is_exiting=false;
347       if(currTimeStep > t_leave)  // particle will exit from the nucleus
348       {
349          currTimeStep = t_leave;
350          is_exiting=true;
351       }
352 
353 #ifdef debug_1_RKPropagation
354       G4cerr << "RKPropagation is_exiting?, t_leave, curTimeStep " <<is_exiting<<" "<<t_leave << " " <<currTimeStep<<G4endl;
355       G4cout << "RKPropagation Ekin, field, projectile potential, p "
356             << kt->GetTrackingMomentum().e() - kt->GetTrackingMomentum().mag() << " "
357             << kt->GetPosition()<<" "
358             << G4endl << currentField->GetField(kt->GetPosition()) << " "
359             <<  kt->GetProjectilePotential()<< G4endl
360             << kt->GetTrackingMomentum()
361             << G4endl;
362 #endif
363 
364       G4LorentzVector momold=kt->GetTrackingMomentum();
365       G4ThreeVector posold=kt->GetPosition();
366 
367       //    if (currentField->GetField(kt->GetPosition()) > kt->GetProjectilePotential() ||
368       if (currTimeStep > 0 &&
369             ! FieldTransport(kt, currTimeStep)) {
370          FreeTransport(kt,currTimeStep);
371       }
372 
373 #ifdef debug_1_RKPropagation
374       G4cout << "RKPropagation Ekin, field, p "
375             << kt->GetTrackingMomentum().e() - kt->GetTrackingMomentum().mag() << " "
376             << G4endl << currentField->GetField(kt->GetPosition())<< G4endl
377             << kt->GetTrackingMomentum()
378             << G4endl
379             << "delta p " << momold-kt->GetTrackingMomentum() << G4endl
380             << "del pos " << posold-kt->GetPosition()
381             << G4endl;
382 #endif
383 
384       // complete the transport
385       // FixMe: in some cases there could be a significant
386       //        part to do still in the nucleus, or we stepped to far... depending on
387       //        slope of potential
388       G4double t_in=-1, t_out=0;  // set onto boundary.
389 
390       // should go out, or are already out by a too long step..
391       if(is_exiting ||
392             (GetSphereIntersectionTimes(kt, t_in, t_out) &&t_in<0 && t_out<=0 ))  // particle is exiting
393       {
394          if(t_in < 0 && t_out >= 0)   //still inside, transport safely out.
395          {
396             // transport free to a position that is surely out of the nucleus, to avoid
397             // a new transportation and a new adding the barrier next loop.
398             G4ThreeVector savePos = kt->GetPosition();
399             FreeTransport(kt, t_out);
400             // and evaluate the right the energy
401             G4double newE=kt->GetTrackingMomentum().e();
402 
403             //  G4cout << " V pos/savePos << "
404             //    << (*theFieldMap)[encoding]->GetField(kt->GetPosition())<< " / "
405             //    << (*theFieldMap)[encoding]->GetField(savePos)
406             //    << G4endl;
407 
408             if ( std::abs(currentField->GetField(savePos)) > 0. &&
409                   std::abs(currentField->GetField(kt->GetPosition())) > 0.)
410             { // FixMe GF: savePos/pos may be out of nucleus, where GetField(..)=0
411                //           This wrongly adds or subtracts the Barrier here while
412                //           this is done later.
413                newE += currentField->GetField(savePos)
414                                 - currentField->GetField(kt->GetPosition());
415             }
416 
417             //       G4cout << " go border nucleus, E in/border: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
418 
419             if(newE < kt->GetActualMass())
420             {
421 #ifdef debug_1_RKPropagation
422                G4cout << "RKPropagation-Transport: problem with particle exiting - ignored" << G4endl;
423                G4cout << " cannot leave nucleus, E in/out: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
424 #endif
425                if (kt->GetDefinition() == G4Proton::Proton() ||
426                      kt->GetDefinition() == G4Neutron::Neutron() ) {
427                   kt->SetState(G4KineticTrack::captured);
428                } else {
429                   kt->SetState(G4KineticTrack::gone_out);  //@@GF tofix
430                }
431                continue; // the particle cannot exit the nucleus
432             }
433             G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
434             G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
435             G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
436             G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
437             new4Mom*=G4LorentzRotation(boost);
438             kt->SetTrackingMomentum(new4Mom);
439          }
440          // add the potential barrier
441          // FixMe the Coulomb field is not parallel to mom, this is simple approximation
442          G4double newE = kt->GetTrackingMomentum().e()+currentField->GetField(kt->GetPosition());
443          if(newE < kt->GetActualMass())
444          {  // the particle cannot exit the nucleus  @@@ GF check.
445 #ifdef debug_1_RKPropagation
446             G4cout << " cannot leave nucleus, E in/out: " << kt->GetTrackingMomentum() << " / " << newE <<G4endl;
447 #endif
448             if (kt->GetDefinition() == G4Proton::Proton() ||
449                   kt->GetDefinition() == G4Neutron::Neutron() ) {
450                kt->SetState(G4KineticTrack::captured);
451             } else {
452                kt->SetState(G4KineticTrack::gone_out);  //@@GF tofix
453             }
454             continue;
455          }
456          G4double newP = std::sqrt(newE*newE- sqr(kt->GetActualMass()));
457          G4LorentzVector new4Mom(newP*kt->GetTrackingMomentum().vect().unit(), newE);
458          G4ThreeVector transfer(kt->GetTrackingMomentum().vect()-new4Mom.vect());
459          G4ThreeVector boost= transfer / std::sqrt(transfer.mag2() + sqr(theNucleus->GetMass()));
460          new4Mom*=G4LorentzRotation(boost);
461          kt->SetTrackingMomentum(new4Mom);
462          kt->SetState(G4KineticTrack::gone_out);
463       }
464 
465    }
466 
467 }
468 
469 
470 //----------------------------------------------------------------------------
471 G4ThreeVector G4RKPropagation::GetMomentumTransfer() const
472 //----------------------------------------------------------------------------
473 {
474    return theMomentumTranfer;
475 }
476 
477 
478 //----------------------------------------------------------------------------
479 G4bool G4RKPropagation::FieldTransport(G4KineticTrack * kt, const G4double timeStep)
480 //----------------------------------------------------------------------------
481 {
482    //    G4cout <<"Stepper input"<<kt->GetTrackingMomentum()<<G4endl;
483    // create the integrator stepper
484    //    G4Mag_EqRhs * equation = mapIter->second;
485    G4Mag_EqRhs * equation = (*theEquationMap)[kt->GetDefinition()->GetPDGEncoding()];
486    G4MagIntegratorStepper * stepper = new G4ClassicalRK4(equation);
487 
488    // create the integrator driver
489    G4double hMin = 1.0e-25*second;   // arbitrary choice. Means 0.03 fm at c
490    G4MagInt_Driver * driver = new G4MagInt_Driver(hMin, stepper);
491 
492    // Temporary: use driver->AccurateAdvance()
493    // create the G4FieldTrack needed by AccurateAdvance
494    G4double curveLength = 0;
495    G4FieldTrack track(kt->GetPosition(),
496          kt->GetTrackingMomentum().vect().unit(), // momentum direction
497          curveLength, // curvelength
498          kt->GetTrackingMomentum().e()-kt->GetActualMass(), // kinetic energy
499          kt->GetActualMass(), // restmass
500          kt->GetTrackingMomentum().beta()*c_light); // velocity
501    // integrate
502    G4double eps = 0.01;
503    //    G4cout << "currTimeStep = " << currTimeStep << G4endl;
504    if(!driver->AccurateAdvance(track, timeStep, eps))
505    {  // cannot track this particle
506 #ifdef debug_1_RKPropagation
507       std::cerr << "G4RKPropagation::FieldTransport() warning: integration error."
508             << G4endl << "position " << kt->GetPosition() << " 4mom " <<kt->GetTrackingMomentum()
509             <<G4endl << " timestep " <<timeStep
510             << G4endl;
511 #endif
512       delete driver;
513       delete stepper;
514       return false;
515    }
516    /*
517        G4cout <<" E/Field/Sum be4 : " <<mom.e() << " / "
518            << (*theFieldMap)[encoding]->GetField(pos) << " / "
519        << mom.e()+(*theFieldMap)[encoding]->GetField(pos)
520        << G4endl;
521     */
522 
523    // Correct for momentum ( thus energy) transfered to nucleus, boost particle into moving nucleus frame.
524    G4ThreeVector MomentumTranfer = kt->GetTrackingMomentum().vect() - track.GetMomentum();
525    G4ThreeVector boost= MomentumTranfer / std::sqrt (MomentumTranfer.mag2() +sqr(theNucleus->GetMass()));
526 
527    // update the kt
528    kt->SetPosition(track.GetPosition());
529    G4LorentzVector mom(track.GetMomentum(),std::sqrt(track.GetMomentum().mag2() + sqr(kt->GetActualMass())));
530    mom *= G4LorentzRotation( boost );
531    theMomentumTranfer += ( kt->GetTrackingMomentum() - mom ).vect();
532    kt->SetTrackingMomentum(mom);
533 
534    //    G4cout <<"Stepper output"<<kt<<" "<<kt->GetTrackingMomentum()<<" "<<kt->GetPosition()<<G4endl;
535    /*
536     *   G4ThreeVector MomentumTranfer2=kt->GetTrackingMomentum().vect() - mom.vect();
537     * G4cout << " MomentumTransfer/corrected" <<    MomentumTranfer << " " <<  MomentumTranfer.mag()
538     *       <<  " " <<    MomentumTranfer2 << " " <<  MomentumTranfer2.mag() << " "
539     *     << MomentumTranfer-MomentumTranfer2 << " "<<
540     *     MomentumTranfer-MomentumTranfer2.mag() << " " << G4endl;
541     *      G4cout <<" E/Field/Sum aft : " <<mom.e() << " / "
542     *            << " / " << (*theFieldMap)[encoding]->GetField(pos)<< " / "
543     *      << mom.e()+(*theFieldMap)[encoding]->GetField(pos)
544     *      << G4endl;
545     */
546 
547    delete driver;
548    delete stepper;
549    return true;
550 }
551 
552 //----------------------------------------------------------------------------
553 G4bool G4RKPropagation::FreeTransport(G4KineticTrack * kt, const G4double timeStep)
554 //----------------------------------------------------------------------------
555 {
556    G4ThreeVector newpos = kt->GetPosition() +
557          timeStep*c_light/kt->GetTrackingMomentum().e() * kt->GetTrackingMomentum().vect();
558    kt->SetPosition(newpos);
559    return true;
560 }
561 
562 /*
563 G4bool G4RKPropagation::WillBeCaptured(const G4KineticTrack * kt)
564 {
565   G4double radius = theOuterRadius;
566 
567 // evaluate the final energy. Il will be captured if newE or newP < 0
568   G4ParticleDefinition * definition = kt->GetDefinition();
569   G4double mass = definition->GetPDGMass();
570   G4ThreeVector pos = kt->GetPosition();
571   G4LorentzVector mom = kt->GetTrackingMomentum();
572   G4VNuclearField * field = (*theFieldMap)[definition->GetPDGEncoding()];
573   G4ThreeVector newPos(0, 0, radius); // to get the field on the surface
574 
575   G4double newE = mom.e()+field->GetField(pos)-field->GetField(newPos);
576 
577   return ((newE < mass) ? false : true);
578 }
579  */
580 
581 
582 
583 //----------------------------------------------------------------------------
584 G4bool G4RKPropagation::GetSphereIntersectionTimes(const G4double radius,
585       //----------------------------------------------------------------------------
586       const G4ThreeVector & currentPos,
587       const G4LorentzVector & momentum,
588       G4double & t1, G4double & t2)
589 {
590    G4ThreeVector speed = momentum.vect()/momentum.e(); // boost vector
591    G4double scalarProd = currentPos.dot(speed);
592    G4double speedMag2 = speed.mag2();
593    G4double sqrtArg = scalarProd*scalarProd -
594          speedMag2*(currentPos.mag2()-radius*radius);
595    if(sqrtArg <= 0.) // particle will not intersect the sphere
596    {
597       //     G4cout << " GetSphereIntersectionTimes sqrtArg negative: " << sqrtArg << G4endl;
598       return false;
599    }
600    t1 = (-scalarProd - std::sqrt(sqrtArg))/speedMag2/c_light;
601    t2 = (-scalarProd + std::sqrt(sqrtArg))/speedMag2/c_light;
602    return true;
603 }
604 
605 //----------------------------------------------------------------------------
606 G4bool G4RKPropagation::GetSphereIntersectionTimes(const G4KineticTrack * kt,
607       G4double & t1, G4double & t2)
608 {
609    G4double radius = theOuterRadius + 3*fermi; // "safety" of 3 fermi
610    G4ThreeVector speed = kt->GetTrackingMomentum().vect()/kt->GetTrackingMomentum().e(); // bost vector
611    G4double scalarProd = kt->GetPosition().dot(speed);
612    G4double speedMag2 = speed.mag2();
613    G4double sqrtArg = scalarProd*scalarProd -
614          speedMag2*(kt->GetPosition().mag2()-radius*radius);
615    if(sqrtArg <= 0.) // particle will not intersect the sphere
616    {
617       return false;
618    }
619    t1 = (-scalarProd - std::sqrt(sqrtArg))/speedMag2/c_light;
620    t2 = (-scalarProd + std::sqrt(sqrtArg))/speedMag2/c_light;
621    return true;
622 }
623 
624 // Implementation methods
625 
626 //----------------------------------------------------------------------------
627 void G4RKPropagation::delete_FieldsAndMap(
628       //----------------------------------------------------------------------------
629       std::map <G4int, G4VNuclearField *, std::less<G4int> > * aMap)
630 {
631    if(aMap)
632    {
633       std::map <G4int, G4VNuclearField *, std::less<G4int> >::iterator cur;
634       for(cur = aMap->begin(); cur != aMap->end(); ++cur)
635          delete (*cur).second;
636 
637       aMap->clear();
638       delete aMap;
639    }
640 
641 }
642 
643 //----------------------------------------------------------------------------
644 void G4RKPropagation::delete_EquationsAndMap(
645       //----------------------------------------------------------------------------
646       std::map <G4int, G4Mag_EqRhs *, std::less<G4int> > * aMap)
647 {
648    if(aMap)
649    {
650       std::map <G4int, G4Mag_EqRhs *, std::less<G4int> >::iterator cur;
651       for(cur = aMap->begin(); cur != aMap->end(); ++cur)
652          delete (*cur).second;
653 
654       aMap->clear();
655       delete aMap;
656    }
657 }
658