Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/binary_cascade/src/G4BinaryLightIonReaction.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 #include <algorithm>
 27 #include <vector>
 28 #include <cmath>
 29 #include <numeric>
 30 
 31 #include "G4BinaryLightIonReaction.hh"
 32 #include "G4PhysicalConstants.hh"
 33 #include "G4SystemOfUnits.hh"
 34 #include "G4LorentzVector.hh"
 35 #include "G4LorentzRotation.hh"
 36 #include "G4ReactionProductVector.hh"
 37 #include "G4ping.hh"
 38 #include "G4Delete.hh"
 39 #include "G4Neutron.hh"
 40 #include "G4VNuclearDensity.hh"
 41 #include "G4FermiMomentum.hh"
 42 #include "G4HadTmpUtil.hh"
 43 #include "G4PreCompoundModel.hh"
 44 #include "G4HadronicInteractionRegistry.hh"
 45 #include "G4Log.hh"
 46 #include "G4PhysicsModelCatalog.hh"
 47 #include "G4HadronicParameters.hh"
 48 
 49 G4int G4BinaryLightIonReaction::theBLIR_ID = -1;
 50 
 51 //#define debug_G4BinaryLightIonReaction
 52 //#define debug_BLIR_finalstate
 53 //#define debug_BLIR_result
 54 
 55 G4BinaryLightIonReaction::G4BinaryLightIonReaction(G4VPreCompoundModel* ptr)
 56 : G4HadronicInteraction("Binary Light Ion Cascade"),
 57   theProjectileFragmentation(ptr),
 58   pA(0),pZ(0), tA(0),tZ(0),spectatorA(0),spectatorZ(0),
 59   projectile3dNucleus(0),target3dNucleus(0)
 60 {
 61   if(!ptr) {
 62     G4HadronicInteraction* p =
 63       G4HadronicInteractionRegistry::Instance()->FindModel("PRECO");
 64     G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
 65     if(!pre) { pre = new G4PreCompoundModel(); }
 66     theProjectileFragmentation = pre;
 67   }
 68   theModel = new G4BinaryCascade(theProjectileFragmentation);
 69   theHandler = theProjectileFragmentation->GetExcitationHandler();
 70       theBLIR_ID = G4PhysicsModelCatalog::GetModelID("model_G4BinaryLightIonReaction");
 71   debug_G4BinaryLightIonReactionResults = G4HadronicParameters::Instance()->GetBinaryDebug();
 72 }
 73 
 74 G4BinaryLightIonReaction::~G4BinaryLightIonReaction()
 75 {}
 76 
 77 void G4BinaryLightIonReaction::ModelDescription(std::ostream& outFile) const
 78 {
 79   outFile << "G4Binary Light Ion Cascade is an intra-nuclear cascade model\n"
 80       << "using G4BinaryCasacde to model the interaction of a light\n"
 81       << "nucleus with a nucleus.\n"
 82       << "The lighter of the two nuclei is treated like a set of projectiles\n"
 83       << "which are transported simultaneously through the heavier nucleus.\n";
 84 }
 85 
 86 //--------------------------------------------------------------------------------
 87 struct ReactionProduct4Mom
 88 {
 89    G4LorentzVector operator()(G4LorentzVector a,G4ReactionProduct* b) {return a + G4LorentzVector(b->GetMomentum(), b->GetTotalEnergy() );}
 90 };
 91 
 92 G4HadFinalState *G4BinaryLightIonReaction::
 93 ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus & targetNucleus )
 94 {
 95   if(debug_G4BinaryLightIonReactionResults) G4cerr << " ######### Binary Light Ion Reaction starts ######### " << G4endl;
 96   G4ping debug("debug_G4BinaryLightIonReaction");
 97   pA=aTrack.GetDefinition()->GetBaryonNumber();
 98   pZ=G4lrint(aTrack.GetDefinition()->GetPDGCharge()/eplus);
 99   tA=targetNucleus.GetA_asInt();
100   tZ=targetNucleus.GetZ_asInt();
101   G4double timePrimary = aTrack.GetGlobalTime();
102   G4LorentzVector mom(aTrack.Get4Momentum());
103    //G4cout << "proj mom : " << mom << G4endl;
104   G4LorentzRotation toBreit(mom.boostVector());
105 
106   G4bool swapped=SetLighterAsProjectile(mom, toBreit);
107    //G4cout << "after swap, swapped? / mom " << swapped << " / " << mom <<G4endl;
108   G4ReactionProductVector * result = 0;
109   G4ReactionProductVector * cascaders=0; //new G4ReactionProductVector;
110 //  G4double m_nucl(0);      // to check energy balance
111 
112 
113   //    G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ,pA);
114   //    G4cout << "Entering the decision point "
115   //           << (mom.t()-mom.mag())/pA << " "
116   //     << pA<<" "<< pZ<<" "
117   //     << tA<<" "<< tZ<<G4endl
118   //     << " "<<mom.t()-mom.mag()<<" "
119   //     << mom.t()- m1<<G4endl;
120   if( (mom.t()-mom.mag())/pA < 50*MeV )
121   {
122     //      G4cout << "Using pre-compound only, E= "<<mom.t()-mom.mag()<<G4endl;
123     //      m_nucl = mom.mag();
124      cascaders=FuseNucleiAndPrompound(mom);
125      if( !cascaders )
126      {
127 
128               // abort!! happens for too low energy for nuclei to fuse
129 
130               theResult.Clear();
131               theResult.SetStatusChange(isAlive);
132               theResult.SetEnergyChange(aTrack.GetKineticEnergy());
133               theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
134               return &theResult;
135      }
136   }
137   else
138   {
139      result=Interact(mom,toBreit);
140 
141      if(! result )
142      {
143            // abort!!
144 
145            G4cerr << "G4BinaryLightIonReaction no final state for: " << G4endl;
146            G4cerr << " Primary " << aTrack.GetDefinition()
147               << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
148               << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
149               << ", kinetic energy " << aTrack.GetKineticEnergy()
150               << G4endl;
151            G4cerr << " Target nucleus (A,Z)=("
152                   <<  (swapped?pA:tA)  << ","
153                   << (swapped?pZ:tZ) << ")" << G4endl;
154            G4cerr << " if frequent, please submit above information as bug report"
155                        << G4endl << G4endl;
156 
157            theResult.Clear();
158            theResult.SetStatusChange(isAlive);
159            theResult.SetEnergyChange(aTrack.GetKineticEnergy());
160            theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
161            return &theResult;
162      }
163 
164          // Calculate excitation energy,
165      G4double theStatisticalExEnergy = GetProjectileExcitation();
166 
167 
168      pInitialState = mom;
169         //G4cout << "BLIC: pInitialState from aTrack : " << pInitialState;
170      pInitialState.setT(pInitialState.getT() +
171     G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(tZ,tA));
172       //G4cout << "BLIC: target nucleus added : " << pInitialState << G4endl;
173 
174      delete target3dNucleus;target3dNucleus=0;
175      delete projectile3dNucleus;projectile3dNucleus=0;
176 
177      G4ReactionProductVector * spectators= new G4ReactionProductVector;
178 
179      cascaders = new G4ReactionProductVector;
180 
181      G4LorentzVector pspectators=SortResult(result,spectators,cascaders);
182              // this also sets spectatorA and spectatorZ
183 
184      //      pFinalState=std::accumulate(cascaders->begin(),cascaders->end(),pFinalState,ReactionProduct4Mom);
185 
186      std::vector<G4ReactionProduct *>::iterator iter;
187 
188              // G4cout << "pInitialState, pFinalState / pspectators"<< pInitialState << " / " << pFinalState << " / " << pspectators << G4endl;
189     //      if ( spectA-spectatorA !=0 || spectZ-spectatorZ !=0)
190     //      {
191     //          G4cout << "spect Nucl != spectators: nucl a,z; spect a,z" <<
192     //        spectatorA <<" "<< spectatorZ <<" ; " << spectA <<" "<< spectZ << G4endl;
193     //      }
194      delete result;
195      result=0;
196      G4LorentzVector momentum(pInitialState-pFinalState);
197      G4int loopcount(0);
198         //G4cout << "BLIC: momentum, pspectators : " << momentum << " / " << pspectators << G4endl;
199      while (std::abs(momentum.e()-pspectators.e()) > 10*MeV)                /* Loop checking, 31.08.2015, G.Folger */
200                                                                       // see if on loopcount 
201      {
202        G4LorentzVector pCorrect(pInitialState-pspectators);
203         //G4cout << "BLIC:: BIC nonconservation? (pInitialState-pFinalState) / spectators :" << momentum << " / " << pspectators << "pCorrect "<< pCorrect<< G4endl;
204        // Correct outgoing casacde particles.... to have momentum of (initial state - spectators)
205        G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCorrect);
206        if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
207        {
208          G4cout << "Warning - G4BinaryLightIonReaction E/P correction for cascaders failed" << G4endl;
209        }
210        pFinalState=G4LorentzVector(0,0,0,0);
211        for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
212        {
213          pFinalState += G4LorentzVector( (*iter)->GetMomentum(), (*iter)->GetTotalEnergy() );
214        }
215        momentum=pInitialState-pFinalState;
216        if (++loopcount > 10 )
217        {
218            break;
219        }
220      }
221 
222 //      Check if Energy/Momemtum is now ok, if not return initial state
223      if ( std::abs(momentum.e()-pspectators.e()) > 10*MeV )
224      {
225     for (iter=spectators->begin();iter!=spectators->end();iter++)
226     {
227         delete *iter;
228     }
229     delete spectators;
230      for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
231      {
232          delete *iter;
233      }
234      delete cascaders;
235 
236      G4cout << "G4BinaryLightIonReaction.cc: mom check: " << G4endl
237            << " initial - final " << momentum << " 3.mag "<< momentum.vect().mag() << G4endl   
238            << " .. pInitialState/pFinalState/spectators " << G4endl
239            << pInitialState << G4endl
240            << pFinalState << G4endl
241            << pspectators << G4endl
242            << " .. A,Z " << spectatorA <<" "<< spectatorZ << G4endl;
243      G4cout << "G4BinaryLightIonReaction invalid final state for: " << G4endl;
244      G4cout << " Primary " << aTrack.GetDefinition()
245              << ", (A,Z)=(" << aTrack.GetDefinition()->GetBaryonNumber()
246              << "," << aTrack.GetDefinition()->GetPDGCharge()/eplus << ") "
247              << ", kinetic energy " << aTrack.GetKineticEnergy()
248              << G4endl;
249      G4cout << " Target nucleus (A,Z)=(" <<  targetNucleus.GetA_asInt()
250                  << "," << targetNucleus.GetZ_asInt() << ")" << G4endl;
251      G4cout << " if frequent, please submit above information as bug report"
252            << G4endl << G4endl;
253 #ifdef debug_G4BinaryLightIonReaction
254           G4ExceptionDescription ed;
255           ed << "G4BinaryLightIonreaction: Terminate for above error"  << G4endl;
256           G4Exception("G4BinaryLightIonreaction::ApplyYourSelf()", "BLIC001", FatalException,
257           ed);
258 
259 #endif
260      theResult.Clear();
261      theResult.SetStatusChange(isAlive);
262      theResult.SetEnergyChange(aTrack.GetKineticEnergy());
263      theResult.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
264      return &theResult;
265   
266      }
267        if (spectatorA > 0 )
268      {
269            // DeExciteSpectatorNucleus() also handles also case of A=1, Z=0,1
270                DeExciteSpectatorNucleus(spectators, cascaders, theStatisticalExEnergy, momentum);
271      } else {    // no spectators
272          delete spectators;
273      }
274   }
275   // Rotate to lab
276   G4LorentzRotation toZ;
277   toZ.rotateZ(-1*mom.phi());
278   toZ.rotateY(-1*mom.theta());
279   G4LorentzRotation toLab(toZ.inverse());
280 
281   // Fill the particle change, while rotating. Boost from projectile breit-frame in case we swapped.
282   // theResult.Clear();
283   theResult.Clear();
284   theResult.SetStatusChange(stopAndKill);
285   G4LorentzVector ptot(0);
286   #ifdef debug_BLIR_result
287      G4LorentzVector p_raw;
288   #endif
289   //G4int i=0;
290 
291         G4ReactionProductVector::iterator iter;
292   for(iter=cascaders->begin(); iter!=cascaders->end(); iter++)
293   {
294     if((*iter)->GetNewlyAdded())
295     {
296       G4DynamicParticle * aNewDP =
297           new G4DynamicParticle((*iter)->GetDefinition(),
298               (*iter)->GetTotalEnergy(),
299               (*iter)->GetMomentum() );
300       G4LorentzVector tmp = aNewDP->Get4Momentum();
301              #ifdef debug_BLIR_result
302            p_raw+= tmp;
303              #endif
304       if(swapped)
305       {
306         tmp*=toBreit.inverse();
307         tmp.setVect(-tmp.vect());
308       }
309       tmp *= toLab;
310       aNewDP->Set4Momentum(tmp);
311       G4HadSecondary aNew = G4HadSecondary(aNewDP);
312             G4double time = 0;                     //(*iter)->GetCreationTime();
313             //if(time < 0.0) { time = 0.0; }
314             aNew.SetTime(timePrimary + time);
315             //aNew.SetCreatorModelID((*iter)->GetCreatorModelID()); //AR-02Aug2021 : For some reasons, it does NOT work!
316             aNew.SetCreatorModelID(theBLIR_ID);
317 
318       theResult.AddSecondary(aNew);
319       ptot += tmp;
320               //G4cout << "BLIC: Secondary " << aNew->GetDefinition()->GetParticleName()
321               //       <<" "<<  aNew->GetMomentum()<<" "<<  aNew->GetTotalEnergy() << G4endl;
322     }
323     delete *iter;
324   }
325   delete cascaders;
326 
327 #ifdef debug_BLIR_result
328   //G4cout << "Result analysis, secondaries " << theResult.GetNumberOfSecondaries() << G4endl;
329   //G4cout << "p_tot_raw " << p_raw << " sum p final " << ptot << G4endl;
330   G4double m_nucl=  G4ParticleTable::GetParticleTable()->GetIonTable()->
331           GetIonMass(targetNucleus.GetZ_asInt(),targetNucleus.GetA_asInt());
332   // delete? tZ=targetNucleus.GetZ_asInt();
333 
334   //G4cout << "BLIC Energy conservation initial/primary/nucleus/final/delta(init-final) "
335    //     << aTrack.GetTotalEnergy()   + m_nucl <<" "<< aTrack.GetTotalEnergy() <<" "<< m_nucl <<" "<<ptot.e()
336    //     <<" "<< aTrack.GetTotalEnergy() + m_nucl - ptot.e() << G4endl;
337   G4cout << "BLIC momentum conservation " << aTrack.Get4Momentum()+ G4LorentzVector(m_nucl)
338       << " ptot " << ptot << " delta " << aTrack.Get4Momentum()+ G4LorentzVector(m_nucl) - ptot
339       << "        3mom.mag() " << (aTrack.Get4Momentum()+ G4LorentzVector(m_nucl) - ptot).vect().mag() << G4endl;
340 #endif
341 
342   if(debug_G4BinaryLightIonReactionResults) G4cerr << " ######### Binary Light Ion Reaction number ends ######### " << G4endl;
343 
344   return &theResult;
345 }
346 
347 //--------------------------------------------------------------------------------
348 
349 //****************************************************************************
350 G4bool G4BinaryLightIonReaction::EnergyAndMomentumCorrector(
351     G4ReactionProductVector* Output, G4LorentzVector& TotalCollisionMom)
352 //****************************************************************************
353 {
354   const int    nAttemptScale = 2500;
355   const double ErrLimit = 1.E-6;
356   if (Output->empty())
357     return TRUE;
358   G4LorentzVector SumMom(0,0,0,0);
359   G4double        SumMass = 0;
360   G4double        TotalCollisionMass = TotalCollisionMom.m();
361   size_t i = 0;
362   // Calculate sum hadron 4-momenta and summing hadron mass
363   for(i = 0; i < Output->size(); i++)
364   {
365     SumMom  += G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
366     SumMass += (*Output)[i]->GetDefinition()->GetPDGMass();
367   }
368     // G4cout << " E/P corrector, SumMass, SumMom.m2, TotalMass "
369     //       << SumMass <<" "<< SumMom.m2() <<" "<<TotalCollisionMass<< G4endl;
370   if (SumMass > TotalCollisionMass) return FALSE;
371   SumMass = SumMom.m2();
372   if (SumMass < 0) return FALSE;
373   SumMass = std::sqrt(SumMass);
374 
375   // Compute c.m.s. hadron velocity and boost KTV to hadron c.m.s.
376   G4ThreeVector Beta = -SumMom.boostVector();
377         //G4cout << " == pre boost 2 "<< SumMom.e()<< " "<< SumMom.mag()<<" "<< Beta <<G4endl;
378   //--old    Output->Boost(Beta);
379   for(i = 0; i < Output->size(); i++)
380   {
381     G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
382     mom *= Beta;
383     (*Output)[i]->SetMomentum(mom.vect());
384     (*Output)[i]->SetTotalEnergy(mom.e());
385   }
386 
387   // Scale total c.m.s. hadron energy (hadron system mass).
388   // It should be equal interaction mass
389   G4double Scale = 0,OldScale=0;
390   G4double factor = 1.;
391   G4int cAttempt = 0;
392   G4double Sum = 0;
393   G4bool success = false;
394   for(cAttempt = 0; cAttempt < nAttemptScale; cAttempt++)
395   {
396     Sum = 0;
397     for(i = 0; i < Output->size(); i++)
398     {
399       G4LorentzVector HadronMom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
400       HadronMom.setVect(HadronMom.vect()+ factor*Scale*HadronMom.vect());
401       G4double E = std::sqrt(HadronMom.vect().mag2() + sqr((*Output)[i]->GetDefinition()->GetPDGMass()));
402       HadronMom.setE(E);
403       (*Output)[i]->SetMomentum(HadronMom.vect());
404       (*Output)[i]->SetTotalEnergy(HadronMom.e());
405       Sum += E;
406     }
407     OldScale=Scale;
408     Scale = TotalCollisionMass/Sum - 1;
409     //  G4cout << "E/P corr - " << cAttempt << " " << Scale << G4endl;
410     if (std::abs(Scale) <= ErrLimit
411         || OldScale == Scale)     // protect 'frozen' situation and divide by 0 in calculating new factor below
412     {
413       if (debug_G4BinaryLightIonReactionResults) G4cout << "E/p corrector: " << cAttempt << G4endl;
414       success = true;
415       break;
416     }
417     if ( cAttempt > 10 )
418     {
419       //         G4cout << " speed it up? " << std::abs(OldScale/(OldScale-Scale)) << G4endl;
420       factor=std::max(1.,G4Log(std::abs(OldScale/(OldScale-Scale))));
421       //   G4cout << " ? factor ? " << factor << G4endl;
422     }
423   }
424 
425   if( (!success)  && debug_G4BinaryLightIonReactionResults)
426   {
427     G4cout << "G4G4BinaryLightIonReaction::EnergyAndMomentumCorrector - Warning"<<G4endl;
428     G4cout << "   Scale not unity at end of iteration loop: "<<TotalCollisionMass<<" "<<Sum<<" "<<Scale<<G4endl;
429     G4cout << "   Increase number of attempts or increase ERRLIMIT"<<G4endl;
430   }
431 
432   // Compute c.m.s. interaction velocity and KTV back boost
433   Beta = TotalCollisionMom.boostVector();
434   //--old    Output->Boost(Beta);
435   for(i = 0; i < Output->size(); i++)
436   {
437     G4LorentzVector mom = G4LorentzVector((*Output)[i]->GetMomentum(),(*Output)[i]->GetTotalEnergy());
438     mom *= Beta;
439     (*Output)[i]->SetMomentum(mom.vect());
440     (*Output)[i]->SetTotalEnergy(mom.e());
441   }
442   return TRUE;
443 }
444 G4bool G4BinaryLightIonReaction::SetLighterAsProjectile(G4LorentzVector & mom,const G4LorentzRotation & toBreit)
445 {
446    G4bool swapped = false;
447    if(tA<pA)
448    {
449       swapped = true;
450       G4int tmp(0);
451       tmp = tA; tA=pA; pA=tmp;
452       tmp = tZ; tZ=pZ; pZ=tmp;
453       G4double m1=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ,pA);
454       G4LorentzVector it(m1, G4ThreeVector(0,0,0));
455       mom = toBreit*it;
456    }
457    return swapped;
458 }
459 G4ReactionProductVector * G4BinaryLightIonReaction::FuseNucleiAndPrompound(const G4LorentzVector & mom)
460 {
461    // Check if kinematically nuclei can fuse.
462    G4double mFused=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(pZ+tZ,pA+tA);
463    G4double mTarget=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(tZ,tA);
464    G4LorentzVector pCompound(mom.e()+mTarget,mom.vect());
465    G4double m2Compound=pCompound.m2();
466    if (m2Compound < sqr(mFused) ) {
467      //G4cout << "G4BLIC: projectile p, mTarget, mFused, mCompound, delta: " <<mom <<  " " << mTarget <<  " " << mFused
468      //    <<  " " << sqrt(m2Compound)<<  " " << sqrt(m2Compound) - mFused << G4endl;
469      return 0;
470    }
471 
472    G4Fragment aPreFrag;
473    aPreFrag.SetZandA_asInt(pZ+tZ, pA+tA);
474    aPreFrag.SetNumberOfParticles(pA);
475    aPreFrag.SetNumberOfCharged(pZ);
476    aPreFrag.SetNumberOfHoles(0);
477    //GF FIXME: whyusing plop in z direction? this will not conserve momentum?
478    //G4ThreeVector plop(0.,0., mom.vect().mag());
479    //G4LorentzVector aL(mom.t()+mTarget, plop);
480    G4LorentzVector aL(mom.t()+mTarget,mom.vect());
481    aPreFrag.SetMomentum(aL);
482 
483 
484          //G4cout << "Fragment INFO "<< pA+tA <<" "<<pZ+tZ<<" "
485          //       << aL <<" "<<G4endl << aPreFrag << G4endl;
486    G4ReactionProductVector * cascaders = theProjectileFragmentation->DeExcite(aPreFrag);
487    //G4double tSum = 0;
488    for(size_t count = 0; count<cascaders->size(); count++)
489    {
490       cascaders->operator[](count)->SetNewlyAdded(true);
491       //tSum += cascaders->operator[](count)->GetKineticEnergy();
492    }
493    //       G4cout << "Exiting pre-compound only, E= "<<tSum<<G4endl;
494    return cascaders;
495 }
496 G4ReactionProductVector * G4BinaryLightIonReaction::Interact(G4LorentzVector & mom, const G4LorentzRotation & toBreit)
497 {
498       G4ReactionProductVector * result = 0;
499       G4double projectileMass(0);
500       G4LorentzVector it;
501 
502       G4int tryCount(0);
503       do
504       {
505          ++tryCount;
506          projectile3dNucleus = new G4Fancy3DNucleus;
507          projectile3dNucleus->Init(pA, pZ);
508          projectile3dNucleus->CenterNucleons();
509          projectileMass=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(
510                projectile3dNucleus->GetCharge(),projectile3dNucleus->GetMassNumber());
511          it=toBreit * G4LorentzVector(projectileMass,G4ThreeVector(0,0,0));
512 
513          target3dNucleus = new G4Fancy3DNucleus;
514          target3dNucleus->Init(tA, tZ);
515          G4double impactMax = target3dNucleus->GetOuterRadius()+projectile3dNucleus->GetOuterRadius();
516          //        G4cout << "out radius - nucleus - projectile " << target3dNucleus->GetOuterRadius()/fermi << " - " << projectile3dNucleus->GetOuterRadius()/fermi << G4endl;
517          G4double aX=(2.*G4UniformRand()-1.)*impactMax;
518          G4double aY=(2.*G4UniformRand()-1.)*impactMax;
519          G4ThreeVector pos(aX, aY, -2.*impactMax-5.*fermi);
520 
521          G4KineticTrackVector * initalState = new G4KineticTrackVector;
522          projectile3dNucleus->StartLoop();
523          G4Nucleon * aNuc;
524          G4LorentzVector tmpV(0,0,0,0);
525          #ifdef debug_BLIR_finalstate
526              G4LorentzVector pinitial;
527          #endif
528          G4LorentzVector nucleonMom(1./pA*mom);
529          nucleonMom.setZ(nucleonMom.vect().mag());
530          nucleonMom.setX(0);
531          nucleonMom.setY(0);
532          theFermi.Init(pA,pZ);
533          while( (aNuc=projectile3dNucleus->GetNextNucleon()) )   /* Loop checking, 31.08.2015, G.Folger */
534          {
535             G4LorentzVector p4 = aNuc->GetMomentum();
536             tmpV+=p4;
537             G4ThreeVector nucleonPosition(aNuc->GetPosition());
538             G4double density=(projectile3dNucleus->GetNuclearDensity())->GetDensity(nucleonPosition);
539             nucleonPosition += pos;
540             G4KineticTrack * it1 = new G4KineticTrack(aNuc, nucleonPosition, nucleonMom );
541             it1->SetState(G4KineticTrack::outside);
542             G4double pfermi= theFermi.GetFermiMomentum(density);
543             G4double mass = aNuc->GetDefinition()->GetPDGMass();
544             G4double Efermi= std::sqrt( sqr(mass) + sqr(pfermi)) - mass;
545             it1->SetProjectilePotential(-Efermi);
546             initalState->push_back(it1);
547             #ifdef debug_BLIR_finalstate
548                pinitial += it1->Get4Momentum();
549             #endif
550          }
551 
552          result=theModel->Propagate(initalState, target3dNucleus);
553          #ifdef debug_BLIR_finalstate
554            if( result && result->size()>0)
555            {
556      G4cout << "  Cascade result " << G4endl;
557              G4LorentzVector presult;
558              G4ReactionProductVector::iterator iter;
559              G4ReactionProduct xp;
560              for (iter=result->begin(); iter !=result->end(); ++iter)
561              {
562               presult += G4LorentzVector((*iter)->GetMomentum(),(*iter)->GetTotalEnergy());
563         G4cout << (*iter)->GetDefinition()->GetParticleName() << "  :  " 
564         << "("<< (*iter)->GetMomentum().x()<<","
565         <<    (*iter)->GetMomentum().y()<<","
566         <<    (*iter)->GetMomentum().z()<<";"
567         <<    (*iter)->GetTotalEnergy() <<")"<< G4endl;
568              }
569 
570             G4cout << "BLIC check result :  initial " << pinitial << " mass tgt " << target3dNucleus->GetMass()
571                  << " final " << presult
572                  << " IF - FF " << pinitial +G4LorentzVector(target3dNucleus->GetMass()) - presult << G4endl;
573 
574            }
575          #endif
576          if( result && result->size()==0)
577          {
578             delete result;
579             result=0;
580          }
581          if ( ! result )
582          {
583             delete target3dNucleus;
584             delete projectile3dNucleus;
585          }
586 
587          // std::for_each(initalState->begin(), initalState->end(), Delete<G4KineticTrack>());
588          // delete initalState;
589 
590       } while (! result && tryCount< 150);   /* Loop checking, 31.08.2015, G.Folger */
591       return result;
592 }
593 G4double G4BinaryLightIonReaction::GetProjectileExcitation()
594 {
595 
596       G4Nucleon * aNuc;
597       // the projectileNucleus excitation energy estimate...
598       G4double theStatisticalExEnergy = 0;
599       projectile3dNucleus->StartLoop();
600       while( (aNuc=projectile3dNucleus->GetNextNucleon()) )   /* Loop checking, 31.08.2015, G.Folger */
601       {
602                 //G4cout << " Nucleon : " << aNuc->GetDefinition()->GetParticleName() <<" "<< aNuc->AreYouHit() <<" "<<aNuc->GetMomentum()<<G4endl;
603          if(aNuc->AreYouHit()) {
604             G4ThreeVector aPosition(aNuc->GetPosition());
605             G4double localDensity = projectile3dNucleus->GetNuclearDensity()->GetDensity(aPosition);
606             G4double localPfermi = theFermi.GetFermiMomentum(localDensity);
607             G4double nucMass = aNuc->GetDefinition()->GetPDGMass();
608             G4double localFermiEnergy = std::sqrt(nucMass*nucMass + localPfermi*localPfermi) - nucMass;
609             G4double deltaE = localFermiEnergy - (aNuc->GetMomentum().t()-aNuc->GetMomentum().mag());
610             theStatisticalExEnergy += deltaE;
611          }
612       }
613       return theStatisticalExEnergy;
614 }
615 
616 G4LorentzVector G4BinaryLightIonReaction::SortResult(G4ReactionProductVector * result, G4ReactionProductVector * spectators,G4ReactionProductVector * cascaders)
617 {
618    unsigned int i(0);
619    spectatorA=spectatorZ=0;
620    G4LorentzVector pspectators(0,0,0,0);
621    pFinalState=G4LorentzVector(0,0,0,0);
622    for(i=0; i<result->size(); i++)
623    {
624       if( (*result)[i]->GetNewlyAdded() )
625       {
626          pFinalState += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
627          cascaders->push_back((*result)[i]);
628       }
629       else {
630          //          G4cout <<" spectator ... ";
631          pspectators += G4LorentzVector( (*result)[i]->GetMomentum(), (*result)[i]->GetTotalEnergy() );
632          spectators->push_back((*result)[i]);
633          spectatorA++;
634          spectatorZ+= G4lrint((*result)[i]->GetDefinition()->GetPDGCharge()/eplus);
635       }
636 
637       //       G4cout << (*result)[i]<< " "
638       //        << (*result)[i]->GetDefinition()->GetParticleName() << " "
639       //        << (*result)[i]->GetMomentum()<< " "
640       //        << (*result)[i]->GetTotalEnergy() << G4endl;
641    }
642       //G4cout << "pFinalState / pspectators, (A,Z), p " << pFinalState << " / " << spectators->size()
643       //    << " (" << spectatorA << ", "<< spectatorZ  << "), 4-mom: " << pspectators << G4endl;
644 
645    return pspectators;
646 }
647 
648 void G4BinaryLightIonReaction::DeExciteSpectatorNucleus(G4ReactionProductVector * spectators, G4ReactionProductVector * cascaders,
649                                                  G4double theStatisticalExEnergy, G4LorentzVector & pSpectators)
650 {
651    // call precompound model
652    G4ReactionProductVector * proFrag = 0;
653    G4LorentzVector pFragment(0.,0.,0.,0.);
654    //      G4cout << " == pre boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
655    G4LorentzRotation boost_fragments;
656    //      G4cout << " == post boost 1 "<< momentum.e()<< " "<< momentum.mag()<<G4endl;
657    //    G4LorentzRotation boost_spectator_mom(-momentum.boostVector());
658    //     G4cout << "- momentum " << boost_spectator_mom * momentum << G4endl;
659    G4LorentzVector pFragments(0,0,0,0);
660 
661    if(spectatorZ>0 && spectatorA>1)
662    {
663       //  Make the fragment
664       G4Fragment aProRes;
665       aProRes.SetZandA_asInt(spectatorZ, spectatorA);
666       aProRes.SetNumberOfParticles(0);
667       aProRes.SetNumberOfCharged(0);
668       aProRes.SetNumberOfHoles(pA-spectatorA);
669       G4double mFragment=G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(spectatorZ,spectatorA);
670       pFragment=G4LorentzVector(0,0,0,mFragment+std::max(0.,theStatisticalExEnergy) );
671       aProRes.SetMomentum(pFragment);
672 
673       proFrag = theHandler->BreakItUp(aProRes);
674 
675       boost_fragments = G4LorentzRotation(pSpectators.boostVector());
676 
677       //     G4cout << " Fragment a,z, Mass Fragment, mass spect-mom, exitationE "
678       //       << spectatorA <<" "<< spectatorZ <<" "<< mFragment <<" "
679       //       << momentum.mag() <<" "<< momentum.mag() - mFragment
680       //       << " "<<theStatisticalExEnergy
681       //       << " "<< boost_fragments*pFragment<< G4endl;
682       G4ReactionProductVector::iterator ispectator;
683       for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
684       {
685          delete *ispectator;
686       }
687    }
688    else if(spectatorA!=0)
689    {
690      G4ReactionProductVector::iterator ispectator;
691      for (ispectator=spectators->begin();ispectator!=spectators->end();ispectator++)
692       {
693          (*ispectator)->SetNewlyAdded(true);
694          cascaders->push_back(*ispectator);
695          pFinalState+=G4LorentzVector((*ispectator)->GetMomentum(),(*ispectator)->GetTotalEnergy());
696                   //G4cout << "BLIC: spectatorA>0, Z=0 from spectator "
697                   // << (*ispectator)->GetDefinition()->GetParticleName() << " "
698                   // << (*ispectator)->GetMomentum()<< " "
699                   // << (*ispectator)->GetTotalEnergy() << G4endl;
700       }
701 
702    }
703    // / if (spectators)
704    delete spectators;
705 
706    // collect the evaporation part and boost to spectator frame
707    G4ReactionProductVector::iterator ii;
708    if(proFrag)
709    {
710       for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
711       {
712          (*ii)->SetNewlyAdded(true);
713          G4LorentzVector tmp((*ii)->GetMomentum(),(*ii)->GetTotalEnergy());
714          tmp *= boost_fragments;
715          (*ii)->SetMomentum(tmp.vect());
716          (*ii)->SetTotalEnergy(tmp.e());
717          //      result->push_back(*ii);
718          pFragments += tmp;
719       }
720    }
721 
722    //    G4cout << "Fragmented p, momentum, delta " << pFragments <<" "<<momentum
723    //            <<" "<< pFragments-momentum << G4endl;
724 
725    //  correct p/E of Cascade secondaries
726    G4LorentzVector pCas=pInitialState - pFragments;
727 
728        //G4cout <<"BLIC: Going to correct from " << pFinalState << " to " << pCas << G4endl;
729    //  the creation of excited fragment did violate E/p, so correct cascaders to get overall conservation.
730    G4bool EnergyIsCorrect=EnergyAndMomentumCorrector(cascaders, pCas);
731    if ( ! EnergyIsCorrect && debug_G4BinaryLightIonReactionResults)
732    {
733       G4cout << "G4BinaryLightIonReaction E/P correction for nucleus failed, will try to correct overall" << G4endl;
734    }
735 
736    //  Add deexcitation secondaries
737    if(proFrag)
738    {
739       for(ii=proFrag->begin(); ii!=proFrag->end(); ii++)
740       {
741          cascaders->push_back(*ii);
742       }
743       delete proFrag;
744    }
745       //G4cout << "EnergyIsCorrect? " << EnergyIsCorrect << G4endl;
746    if ( ! EnergyIsCorrect )
747    {
748          // G4cout <<" ! EnergyIsCorrect " << pFinalState << " to " << pInitialState << G4endl;
749       if (! EnergyAndMomentumCorrector(cascaders,pInitialState))
750       {
751          if(debug_G4BinaryLightIonReactionResults)
752             G4cout << "G4BinaryLightIonReaction E/P corrections failed" << G4endl;
753       }
754    }
755 
756 }
757 
758