Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 27 28 #include "G4NeutrinoElectronNcXsc.hh" 29 #include "G4PhysicalConstants.hh" 30 #include "G4SystemOfUnits.hh" 31 #include "G4DynamicParticle.hh" 32 #include "G4ParticleTable.hh" 33 #include "G4IonTable.hh" 34 #include "G4HadTmpUtil.hh" 35 #include "G4Proton.hh" 36 #include "G4NistManager.hh" 37 38 using namespace std; 39 using namespace CLHEP; 40 41 G4NeutrinoElectronNcXsc::G4NeutrinoElectronNcXsc() 42 : G4VCrossSectionDataSet("NuElectronNcXsc") 43 { 44 // PDG2016: Gf=1.1663787(6)e-5*(hc)^3/GeV^2 45 // fCofXsc = Gf*Gf*MeC2*2/pi 46 47 fCofXsc = 1.36044e-22; 48 fCofXsc *= hbarc*hbarc*electron_mass_c2; 49 fCofXsc /= halfpi; 50 51 // G4cout<<"hbarc = "<<hbarc/MeV/fermi<<" MeV*fermi"<<G4endl; 52 53 // PDG2016: sin^2 theta Weinberg 54 55 fSin2tW = 0.23129; // 0.2312; 56 57 fCutEnergy = 0.; // default value 58 fBiasingFactor = 1.; 59 } 60 61 G4NeutrinoElectronNcXsc::~G4NeutrinoElectronNcXsc() 62 {} 63 64 ////////////////////////////////////////////////////// 65 66 G4bool 67 G4NeutrinoElectronNcXsc::IsElementApplicable( const G4DynamicParticle* aPart, G4int, const G4Material*) 68 { 69 G4bool result = false; 70 G4String pName = aPart->GetDefinition()->GetParticleName(); 71 G4double minEnergy = 0., energy = aPart->GetTotalEnergy(); 72 // Z *= 1; 73 if( fCutEnergy > 0. ) // min detected recoil electron energy 74 { 75 minEnergy = 0.5*(fCutEnergy+sqrt(fCutEnergy*(fCutEnergy+2.*electron_mass_c2))); 76 } 77 if( ( pName == "nu_e" || pName == "anti_nu_e" || 78 pName == "nu_mu" || pName == "anti_nu_mu" || 79 pName == "nu_tau" || pName == "anti_nu_tau" ) && 80 energy > minEnergy ) 81 { 82 result = true; 83 } 84 return result; 85 } 86 87 //////////////////////////////////////////////////// 88 89 G4double G4NeutrinoElectronNcXsc:: 90 GetElementCrossSection(const G4DynamicParticle* aPart, G4int ZZ, 91 const G4Material*) 92 { 93 G4double result = 0., cofL, cofR, cofL2, cofR2, cofLR; 94 95 G4double energy = aPart->GetTotalEnergy(); 96 G4String pName = aPart->GetDefinition()->GetParticleName(); 97 98 if( pName == "nu_e") 99 { 100 cofL = 0.5 + fSin2tW; 101 cofR = fSin2tW; 102 } 103 else if( pName == "anti_nu_e") 104 { 105 cofL = fSin2tW; 106 cofR = 0.5 + fSin2tW; 107 } 108 else if( pName == "nu_mu") 109 { 110 cofL = -0.5 + fSin2tW; 111 cofR = fSin2tW; 112 } 113 else if( pName == "anti_nu_mu") 114 { 115 cofL = fSin2tW; 116 cofR = -0.5 + fSin2tW; 117 } 118 else if( pName == "nu_tau") // vmg: nu_tau as nu_mu ??? 119 { 120 cofL = -0.5 + fSin2tW; 121 cofR = fSin2tW; 122 } 123 else if( pName == "anti_nu_tau") 124 { 125 cofL = fSin2tW; 126 cofR = -0.5 + fSin2tW; 127 } 128 else 129 { 130 return result; 131 } 132 // if( energy <= electron_mass_c2 ) return result; 133 134 cofL2 = cofL*cofL; 135 cofR2 = cofR*cofR; 136 cofLR = cofL*cofR; 137 138 if( fCutEnergy > 0. ) 139 { 140 G4double tM = 2.*energy*energy/(electron_mass_c2 + 2.*energy); 141 G4double tM2 = tM*tM; 142 G4double tM3 = tM*tM2; 143 G4double tC = fCutEnergy; 144 G4double tC2 = tC*tC; 145 G4double tC3 = tC*tC2; 146 147 result = (cofL2+cofR2)*(tM-tC); 148 result -= (cofR2+cofLR*0.5*electron_mass_c2/energy)*(tM2-tC2)/energy; 149 result += cofR2*(tM3-tC3)/energy/energy/3.; 150 } 151 else 152 { 153 G4double rtM = 2.*energy/(electron_mass_c2 + 2.*energy); 154 G4double rtM2 = rtM*rtM; 155 G4double rtM3 = rtM*rtM2; 156 157 result = (cofL2+cofR2)*rtM*energy; 158 result -= (cofR2*energy+cofLR*0.5*electron_mass_c2)*rtM2; 159 result += cofR2*rtM3*energy/3.; 160 } 161 // result = cofL*cofL + cofR*cofR/3.; 162 // G4cout<<"cofL2 + cofR2/3. = "<<result<<G4endl; 163 // result -= 0.5*cofL*cofR*electron_mass_c2/energy; 164 165 G4double aa = 1.; 166 G4double bb = 1.7; 167 G4double gw = 2.141*GeV; 168 G4double dd = 5000.; 169 G4double mw = 80.385*GeV; 170 G4double mz = 91.1876*GeV; 171 172 G4double emass = electron_mass_c2; 173 G4double totS = 2.*energy*emass + emass*emass; 174 175 if( energy > 50.*GeV ) 176 { 177 result *= bb; 178 result /= 1.+ aa*totS/mz/mz; 179 180 if( pName == "anti_nu_e") 181 { 182 result *= 1. + dd*gw*gw*totS/( (totS-mw*mw)*(totS-mw*mw)+gw*gw*mw*mw ); 183 } 184 } 185 186 result *= fCofXsc; //*energy; 187 188 result *= ZZ; // incoherent sum over all element electrons 189 190 result *= fBiasingFactor; 191 192 return result; 193 } 194 195