Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * * 21 // * Parts of this code which have been developed by QinetiQ Ltd * 22 // * under contract to the European Space Agency (ESA) are the * 23 // * intellectual property of ESA. Rights to use, copy, modify and * 24 // * redistribute this software for general public use are granted * 25 // * in compliance with any licensing, distribution and development * 26 // * policy adopted by the Geant4 Collaboration. This code has been * 27 // * written by QinetiQ Ltd for the European Space Agency, under ESA * 28 // * contract 17191/03/NL/LvH (Aurora Programme). * 29 // * * 30 // * By using, copying, modifying or distributing the software (or * 31 // * any work based on the software) you agree to acknowledge its * 32 // * use in resulting scientific publications, and indicate your * 33 // * acceptance of all terms of the Geant4 Software license. * 34 // ******************************************************************** 35 // 36 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 37 // 38 // MODULE: G4EMDissociationCrossSection.cc 39 // 40 // Version: B.1 41 // Date: 15/04/04 42 // Author: P R Truscott 43 // Organisation: QinetiQ Ltd, UK 44 // Customer: ESA/ESTEC, NOORDWIJK 45 // Contract: 17191/03/NL/LvH 46 // 47 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 48 // 49 // CHANGE HISTORY 50 // -------------- 51 // 52 // 17 October 2003, P R Truscott, QinetiQ Ltd, UK 53 // Created. 54 // 55 // 15 March 2004, P R Truscott, QinetiQ Ltd, UK 56 // Beta release 57 // 58 // 30 May 2005, J.P. Wellisch removed a compilation warning on gcc 3.4 for 59 // geant4 7.1. 60 // 09 November 2010, V.Ivanchenko make class applicable for Hydrogen but 61 // set cross section for Hydrogen to zero 62 // 63 // 17 August 2011, V.Ivanchenko, provide migration to new design of cross 64 // sections considering this cross section as element-wise 65 // 66 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 67 ////////////////////////////////////////////////////////////////////////////// 68 // 69 #include "G4EMDissociationCrossSection.hh" 70 #include "G4PhysicalConstants.hh" 71 #include "G4SystemOfUnits.hh" 72 #include "G4ParticleTable.hh" 73 #include "G4IonTable.hh" 74 #include "G4HadTmpUtil.hh" 75 #include "globals.hh" 76 #include "G4NistManager.hh" 77 78 79 G4EMDissociationCrossSection::G4EMDissociationCrossSection () 80 : G4VCrossSectionDataSet("Electromagnetic dissociation") 81 { 82 // This function makes use of the class which can sample the virtual photon 83 // spectrum, G4EMDissociationSpectrum. 84 85 thePhotonSpectrum = new G4EMDissociationSpectrum(); 86 87 // Define other constants. 88 89 r0 = 1.18 * fermi; 90 J = 36.8 * MeV; 91 Qprime = 17.0 * MeV; 92 epsilon = 0.0768; 93 xd = 0.25; 94 } 95 96 ////////////////////////////////////////////////////////////////////////////// 97 98 G4EMDissociationCrossSection::~G4EMDissociationCrossSection() 99 { 100 delete thePhotonSpectrum; 101 } 102 ///////////////////////////////////////////////////////////////////////////// 103 // 104 G4bool 105 G4EMDissociationCrossSection::IsElementApplicable(const G4DynamicParticle* part, 106 G4int /*ZZ*/, const G4Material*) 107 { 108 // 109 // The condition for the applicability of this class is that the projectile 110 // must be an ion and the target must have more than one nucleon. In reality 111 // the value of A for either the projectile or target could be much higher, 112 // since for cases where both he projectile and target are medium to small 113 // Z, the probability of the EMD process is, I think, VERY small. 114 // 115 if (G4ParticleTable::GetParticleTable()->GetIonTable()->IsIon(part->GetDefinition())) { 116 return true; 117 } else { 118 return false; 119 } 120 } 121 122 ////////////////////////////////////////////////////////////////////////////// 123 // 124 G4double G4EMDissociationCrossSection::GetElementCrossSection 125 (const G4DynamicParticle* theDynamicParticle, G4int Z, 126 const G4Material*) 127 { 128 // VI protection for Hydrogen 129 if(1 >= Z) { return 0.0; } 130 131 // Zero cross-section for particles with kinetic energy less than 2 MeV to prevent 132 // possible abort signal from bad arithmetic in GetCrossSectionForProjectile 133 if ( theDynamicParticle->GetKineticEnergy() < 2.0*CLHEP::MeV ) { return 0.0; } 134 135 // 136 // Get relevant information about the projectile and target (A, Z) and 137 // velocity of the projectile. 138 // 139 const G4ParticleDefinition *definitionP = theDynamicParticle->GetDefinition(); 140 G4double AP = definitionP->GetBaryonNumber(); 141 G4double ZP = definitionP->GetPDGCharge(); 142 G4double b = theDynamicParticle->GetBeta(); 143 if (b <= 0.0 && b >= 1.0) { return 0.0; } 144 145 G4double AT = G4NistManager::Instance()->GetAtomicMassAmu(Z); 146 G4double ZT = (G4double)Z; 147 G4double bmin = thePhotonSpectrum->GetClosestApproach(AP, ZP, AT, ZT, b); 148 // 149 // 150 // Calculate the cross-section for the projectile and then the target. The 151 // information is returned in a G4PhysicsFreeVector, which separates out the 152 // cross-sections for the E1 and E2 moments of the virtual photon field, and 153 // the energies (GDR and GQR). 154 // 155 G4PhysicsFreeVector *theProjectileCrossSections = 156 GetCrossSectionForProjectile (AP, ZP, AT, ZT, b, bmin); 157 G4double crossSection = 158 (*theProjectileCrossSections)[0]+(*theProjectileCrossSections)[1]; 159 delete theProjectileCrossSections; 160 G4PhysicsFreeVector *theTargetCrossSections = 161 GetCrossSectionForTarget (AP, ZP, AT, ZT, b, bmin); 162 crossSection += 163 (*theTargetCrossSections)[0]+(*theTargetCrossSections)[1]; 164 delete theTargetCrossSections; 165 return crossSection; 166 } 167 //////////////////////////////////////////////////////////////////////////////// 168 // 169 G4PhysicsFreeVector * 170 G4EMDissociationCrossSection::GetCrossSectionForProjectile (G4double AP, 171 G4double ZP, G4double /* AT */, G4double ZT, G4double b, G4double bmin) 172 { 173 // 174 // 175 // Use Wilson et al's approach to calculate the cross-sections due to the E1 176 // and E2 moments of the field at the giant dipole and quadrupole resonances 177 // respectively, Note that the algorithm is traditionally applied to the 178 // EMD break-up of the projectile in the field of the target, as is implemented 179 // here. 180 // 181 // Initialise variables and calculate the energies for the GDR and GQR. 182 // 183 G4double AProot3 = G4Pow::GetInstance()->A13(AP); 184 G4double u = 3.0 * J / Qprime / AProot3; 185 G4double R0 = r0 * AProot3; 186 G4double E_GDR = hbarc / std::sqrt(0.7*amu_c2*R0*R0/8.0/J* 187 (1.0 + u - (1.0 + epsilon + 3.0*u)/(1.0 + epsilon + u)*epsilon)); 188 G4double E_GQR = 63.0 * MeV / AProot3; 189 // 190 // 191 // Determine the virtual photon spectra at these energies. 192 // 193 G4double ZTsq = ZT * ZT; 194 G4double nE1 = ZTsq * 195 thePhotonSpectrum->GetGeneralE1Spectrum(E_GDR, b, bmin); 196 G4double nE2 = ZTsq * 197 thePhotonSpectrum->GetGeneralE2Spectrum(E_GQR, b, bmin); 198 // 199 // 200 // Now calculate the cross-section of the projectile for interaction with the 201 // E1 and E2 fields. 202 // 203 G4double sE1 = 60.0 * millibarn * MeV * (AP-ZP)*ZP/AP; 204 G4double sE2 = 0.22 * microbarn / MeV * ZP * AProot3 * AProot3; 205 if (AP > 100.0) sE2 *= 0.9; 206 else if (AP > 40.0) sE2 *= 0.6; 207 else sE2 *= 0.3; 208 // 209 // 210 // ... and multiply with the intensity of the virtual photon spectra to get 211 // the probability of interaction. 212 // 213 G4PhysicsFreeVector *theCrossSectionVector = new G4PhysicsFreeVector(2); 214 theCrossSectionVector->PutValue(0, E_GDR, sE1*nE1); 215 theCrossSectionVector->PutValue(1, E_GQR, sE2*nE2*E_GQR*E_GQR); 216 217 return theCrossSectionVector; 218 } 219 220 //////////////////////////////////////////////////////////////////////////////// 221 // 222 G4PhysicsFreeVector * 223 G4EMDissociationCrossSection::GetCrossSectionForTarget (G4double AP, 224 G4double ZP, G4double AT, G4double ZT, G4double b, G4double bmin) 225 { 226 // 227 // This is a cheaky little member function to calculate the probability of 228 // EMD for the target in the field of the projectile ... just by reversing the 229 // A and Z's for the participants. 230 // 231 return GetCrossSectionForProjectile (AT, ZT, AP, ZP, b, bmin); 232 } 233 234 //////////////////////////////////////////////////////////////////////////////// 235 // 236 G4double 237 G4EMDissociationCrossSection::GetWilsonProbabilityForProtonDissociation(G4double A, 238 G4double Z) 239 { 240 // 241 // This is a simple algorithm to choose whether a proton or neutron is ejected 242 // from the nucleus in the EMD interaction. 243 // 244 G4double p = 0.0; 245 if (Z < 2.0) 246 p = 0.0; // To avoid to remove one proton from hydrogen isotopes 247 else if (Z < 6.0) 248 p = 0.5; 249 else if (Z < 8.0) 250 p = 0.6; 251 else if (Z < 14.0) 252 p = 0.7; 253 else 254 { 255 G4double p1 = (G4double) Z / (G4double) A; 256 G4double p2 = 1.95*G4Exp(-0.075*Z); 257 if (p1 < p2) p = p1; 258 else p = p2; 259 } 260 261 return p; 262 } 263