Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 27 #include "G4XTRTransparentRegRadModel.hh" 28 29 #include "G4PhysicalConstants.hh" 30 31 //////////////////////////////////////////////////////////////////////////// 32 // Constructor, destructor 33 G4XTRTransparentRegRadModel::G4XTRTransparentRegRadModel( 34 G4LogicalVolume* anEnvelope, G4Material* foilMat, G4Material* gasMat, 35 G4double a, G4double b, G4int n, const G4String& processName) 36 : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName) 37 { 38 G4cout << "Regular transparent X-ray TR radiator EM process is called" 39 << G4endl; 40 41 fExitFlux = true; 42 fAlphaPlate = 10000; 43 fAlphaGas = 1000; 44 } 45 46 /////////////////////////////////////////////////////////////////////////// 47 G4XTRTransparentRegRadModel::~G4XTRTransparentRegRadModel() = default; 48 49 /////////////////////////////////////////////////////////////////////////// 50 void G4XTRTransparentRegRadModel::ProcessDescription(std::ostream& out) const 51 { 52 out << "Process describing radiator of X-ray transition radiation.\n"; 53 } 54 55 /////////////////////////////////////////////////////////////////////////// 56 G4double G4XTRTransparentRegRadModel::SpectralXTRdEdx(G4double energy) 57 { 58 static constexpr G4double cofPHC = 4. * pi * hbarc; 59 G4double result, sum = 0., tmp, cof1, cof2, cofMin, aMa, bMb, sigma; 60 G4int k, kMax, kMin; 61 62 aMa = GetPlateLinearPhotoAbs(energy); 63 bMb = GetGasLinearPhotoAbs(energy); 64 65 if(fCompton) 66 { 67 aMa += GetPlateCompton(energy); 68 bMb += GetGasCompton(energy); 69 } 70 aMa *= fPlateThick; 71 bMb *= fGasThick; 72 73 sigma = aMa + bMb; 74 75 tmp = (fSigma1 - fSigma2) / cofPHC / energy; 76 cof1 = fPlateThick * tmp; 77 cof2 = fGasThick * tmp; 78 79 cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma; 80 cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy; 81 cofMin /= cofPHC; 82 83 kMin = G4int(cofMin); 84 if(cofMin > kMin) 85 kMin++; 86 87 kMax = kMin + 19; 88 89 for(k = kMin; k <= kMax; k++) 90 { 91 tmp = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick); 92 result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2); 93 94 if(k == kMin && kMin == G4int(cofMin)) 95 { 96 sum += 97 0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result; 98 } 99 else 100 { 101 sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result; 102 } 103 } 104 result = 4. * (cof1 + cof2) * (cof1 + cof2) * sum / energy; 105 result *= (1. - std::exp(-fPlateNumber * sigma)) / (1. - std::exp(-sigma)); 106 return result; 107 } 108 109 /////////////////////////////////////////////////////////////////////////// 110 // Approximation for radiator interference factor for the case of 111 // fully Regular radiator. The plate and gas gap thicknesses are fixed. 112 // The mean values of the plate and gas gap thicknesses 113 // are supposed to be about XTR formation zones but much less than 114 // mean absorption length of XTR photons in corresponding material. 115 G4double G4XTRTransparentRegRadModel::GetStackFactor(G4double energy, 116 G4double gamma, 117 G4double varAngle) 118 { 119 G4double aZa = fPlateThick / GetPlateFormationZone(energy, gamma, varAngle); 120 G4double bZb = fGasThick / GetGasFormationZone(energy, gamma, varAngle); 121 G4double aMa = fPlateThick * GetPlateLinearPhotoAbs(energy); 122 G4double bMb = fGasThick * GetGasLinearPhotoAbs(energy); 123 G4double sigma = aMa * fPlateThick + bMb * fGasThick; 124 G4double Qa = std::exp(-0.5 * aMa); 125 G4double Qb = std::exp(-0.5 * bMb); 126 G4double Q = Qa * Qb; 127 128 G4complex Ha(Qa * std::cos(aZa), -Qa * std::sin(aZa)); 129 G4complex Hb(Qb * std::cos(bZb), -Qb * std::sin(bZb)); 130 G4complex H = Ha * Hb; 131 G4complex Hs = conj(H); 132 G4double D = 133 1.0 / ((1. - Q) * (1. - Q) + 134 4. * Q * std::sin(0.5 * (aZa + bZb)) * std::sin(0.5 * (aZa + bZb))); 135 G4complex F1 = 136 (1.0 - Ha) * (1.0 - Hb) * (1.0 - Hs) * G4double(fPlateNumber) * D; 137 G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb * (1.0 - Hs) * (1.0 - Hs) * 138 (1.0 - std::exp(-0.5 * fPlateNumber * sigma)) * D * D; 139 G4complex R = (F1 + F2) * OneInterfaceXTRdEdx(energy, gamma, varAngle); 140 return 2.0 * std::real(R); 141 } 142