Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4RegularXTRadiator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 
 27 #include "G4RegularXTRadiator.hh"
 28 
 29 #include "G4Gamma.hh"
 30 #include "G4PhysicalConstants.hh"
 31 
 32 ////////////////////////////////////////////////////////////////////////////
 33 // Constructor, destructor
 34 G4RegularXTRadiator::G4RegularXTRadiator(G4LogicalVolume* anEnvelope,
 35                                          G4Material* foilMat,
 36                                          G4Material* gasMat, G4double a,
 37                                          G4double b, G4int n,
 38                                          const G4String& processName)
 39   : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
 40 {
 41   G4cout << "Regular X-ray TR radiator EM process is called" << G4endl;
 42 
 43   // Build energy and angular integral spectra of X-ray TR photons from
 44   // a radiator
 45 
 46   fAlphaPlate = 10000;
 47   fAlphaGas   = 1000;
 48   G4cout << "fAlphaPlate = " << fAlphaPlate << " ; fAlphaGas = " << fAlphaGas
 49          << G4endl;
 50 }
 51 
 52 ///////////////////////////////////////////////////////////////////////////
 53 G4RegularXTRadiator::~G4RegularXTRadiator() = default;
 54 
 55 void G4RegularXTRadiator::ProcessDescription(std::ostream& out) const
 56 {
 57   out << "Simulation of X-ray transition radiation generated by\n"
 58          "relativistic charged particles crossing the interface between\n"
 59          "two materials. Thicknesses of plates and gaps are fixed.\n";
 60 }
 61 
 62 ///////////////////////////////////////////////////////////////////////////
 63 G4double G4RegularXTRadiator::SpectralXTRdEdx(G4double energy)
 64 {
 65   G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
 66   G4double aMa, bMb, sigma, dump;
 67   G4int k, kMax, kMin;
 68 
 69   aMa   = fPlateThick * GetPlateLinearPhotoAbs(energy);
 70   bMb   = fGasThick * GetGasLinearPhotoAbs(energy);
 71   sigma = 0.5 * (aMa + bMb);
 72   dump  = std::exp(-fPlateNumber * sigma);
 73   if(verboseLevel > 2)
 74     G4cout << " dump = " << dump << G4endl;
 75   cofPHC = 4 * pi * hbarc;
 76   tmp    = (fSigma1 - fSigma2) / cofPHC / energy;
 77   cof1   = fPlateThick * tmp;
 78   cof2   = fGasThick * tmp;
 79 
 80   cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma;
 81   cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy;
 82   cofMin /= cofPHC;
 83 
 84   theta2 = cofPHC / (energy * (fPlateThick + fGasThick));
 85 
 86   kMin = G4int(cofMin);
 87   if(cofMin > kMin)
 88     kMin++;
 89 
 90   kMax = kMin + 49;
 91 
 92   if(verboseLevel > 2)
 93   {
 94     G4cout << cof1 << "     " << cof2 << "        " << cofMin << G4endl;
 95     G4cout << "kMin = " << kMin << ";    kMax = " << kMax << G4endl;
 96   }
 97   for(k = kMin; k <= kMax; ++k)
 98   {
 99     tmp    = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick);
100     result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2);
101     if(k == kMin && kMin == G4int(cofMin))
102     {
103       sum +=
104         0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
105     }
106     else
107     {
108       sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
109     }
110     theta2k = std::sqrt(theta2 * std::abs(k - cofMin));
111 
112     if(verboseLevel > 2)
113     {
114       G4cout << k << "   " << theta2k << "     "
115              << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result
116              << "      " << sum << G4endl;
117     }
118   }
119   result = 2 * (cof1 + cof2) * (cof1 + cof2) * sum / energy;
120   result *= (1 - dump + 2 * dump * fPlateNumber);
121 
122   return result;
123 }
124 
125 ///////////////////////////////////////////////////////////////////////////
126 // Approximation for radiator interference factor for the case of
127 // fully Regular radiator. The plate and gas gap thicknesses are fixed.
128 // The mean values of the plate and gas gap thicknesses
129 // are supposed to be about XTR formation zones but much less than
130 // mean absorption length of XTR photons in corresponding material.
131 
132 G4double G4RegularXTRadiator::GetStackFactor(G4double energy, G4double gamma,
133                                              G4double varAngle)
134 {
135   // some gamma (10000/1000) like algorithm
136 
137   G4double result, Za, Zb, Ma, Mb;
138 
139   Za = GetPlateFormationZone(energy, gamma, varAngle);
140   Zb = GetGasFormationZone(energy, gamma, varAngle);
141 
142   Ma = GetPlateLinearPhotoAbs(energy);
143   Mb = GetGasLinearPhotoAbs(energy);
144 
145   G4complex Ca(1.0 + 0.5 * fPlateThick * Ma / fAlphaPlate,
146                fPlateThick / Za / fAlphaPlate);
147   G4complex Cb(1.0 + 0.5 * fGasThick * Mb / fAlphaGas,
148                fGasThick / Zb / fAlphaGas);
149 
150   G4complex Ha = std::pow(Ca, -fAlphaPlate);
151   G4complex Hb = std::pow(Cb, -fAlphaGas);
152   G4complex H  = Ha * Hb;
153 
154   G4complex F1 = (1.0 - Ha) * (1.0 - Hb) / (1.0 - H) * G4double(fPlateNumber);
155 
156   G4complex F2 = (1.0 - Ha) * (1.0 - Ha) * Hb / (1.0 - H) / (1.0 - H) *
157                  (1.0 - std::pow(H, fPlateNumber));
158 
159   G4complex R = (F1 + F2) * OneInterfaceXTRdEdx(energy, gamma, varAngle);
160 
161   result = 2.0 * std::real(R);
162 
163   return result;
164 }
165