Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/xrays/src/G4GaussXTRadiator.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // 19.09.21 V. Grichine, first version
 27 //
 28 
 29 #include "G4GaussXTRadiator.hh"
 30 
 31 #include "G4PhysicalConstants.hh"
 32 
 33 ////////////////////////////////////////////////////////////////////////////
 34 // Constructor, destructor
 35 
 36 G4GaussXTRadiator::G4GaussXTRadiator(
 37   G4LogicalVolume* anEnvelope,   G4double alphaPlate, G4double alphaGas, G4Material* foilMat, G4Material* gasMat,
 38   G4double a, G4double b, G4int n, const G4String& processName)
 39   : G4VXTRenergyLoss(anEnvelope, foilMat, gasMat, a, b, n, processName)
 40 {
 41   if(verboseLevel > 0)
 42     G4cout << "Gauss X-ray TR  radiator EM process is called"
 43            << G4endl;
 44 
 45   fAlphaPlate = alphaPlate;
 46   fAlphaGas   = alphaGas; //  1000; // 
 47 }
 48 
 49 ///////////////////////////////////////////////////////////////////////////
 50 G4GaussXTRadiator::~G4GaussXTRadiator() = default;
 51 
 52 ///////////////////////////////////////////////////////////////////////////
 53 void G4GaussXTRadiator::ProcessDescription(std::ostream& out) const
 54 {
 55   out << "Simulation of forward X-ray transition radiation generated by\n"
 56          "relativistic charged particles crossing the interface between\n"
 57          "two materials.\n";
 58 }
 59 
 60 ///////////////////////////////////////////////////////////////////////////
 61 //
 62 // The Fabian-Strujinsky (FS) algorithm for integration over XTR angle, 
 63 // resolution is about 0.1-0.5 mrad
 64 
 65 G4double G4GaussXTRadiator::SpectralXTRdEdx(G4double energy)
 66 {
 67   G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC, theta2, theta2k;
 68   G4int k, kMax, kMin;
 69 
 70   cofPHC = 4. * pi * hbarc;
 71   tmp    = (fSigma1 - fSigma2) / cofPHC / energy;
 72   cof1   = fPlateThick * tmp;
 73   cof2   = fGasThick * tmp;
 74 
 75   cofMin = energy * (fPlateThick + fGasThick) / fGamma / fGamma;
 76   cofMin += (fPlateThick * fSigma1 + fGasThick * fSigma2) / energy;
 77   cofMin /= cofPHC;
 78 
 79   theta2 = cofPHC / (energy * (fPlateThick + fGasThick));
 80 
 81   kMin = G4int(cofMin);
 82   if(cofMin > kMin)
 83     kMin++;
 84 
 85   kMax = kMin + fKrange;
 86 
 87   if(verboseLevel > 2)
 88   {
 89     G4cout << cof1 << "     " << cof2 << "        " << cofMin << G4endl;
 90     G4cout << "kMin = " << kMin << ";    kMax = " << kMax << G4endl;
 91   }
 92   for(k = kMin; k <= kMax; ++k)
 93   {
 94     tmp    = pi * fPlateThick * (k + cof2) / (fPlateThick + fGasThick);
 95     result = (k - cof1) * (k - cof1) * (k + cof2) * (k + cof2);
 96     if(k == kMin && kMin == G4int(cofMin))
 97     {
 98       sum +=
 99         0.5 * std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
100     }
101     else
102     {
103       sum += std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result;
104     }
105     theta2k = std::sqrt(theta2 * std::abs(k - cofMin));
106 
107     if(verboseLevel > 2)
108     {
109       G4cout << k << "   " << theta2k << "     "
110              << std::sin(tmp) * std::sin(tmp) * std::abs(k - cofMin) / result
111              << "      " << sum << G4endl;
112     }
113   }
114   result = 4. * (cof1 + cof2) * (cof1 + cof2) * sum / energy;
115   result *= fPlateNumber;
116 
117   return result;
118 }
119 
120 ///////////////////////////////////////////////////////////////////////////
121 //
122 // Approximation for radiator interference factor for the case of
123 // Gauss-distributed regular radiator. The plate and gas gap thicknesses are Gauss distributed with RMS
124 // sa and sb for plate and gas, respectively.
125 // The mean values of the plate and gas gap thicknesses
126 // are supposed to be about XTR formation zones.
127 
128 
129 G4double G4GaussXTRadiator::GetStackFactor(G4double energy,
130                                                     G4double gamma,
131                                                     G4double varAngle)
132 {
133   G4double result(0.);
134   G4double sa = fPlateThick/fAlphaPlate;
135   G4double sb = fGasThick/fAlphaGas;
136   G4double nn = G4double(fPlateNumber);
137   
138   G4complex med( 0., 1.);
139   G4complex Z1   = GetPlateComplexFZ( energy, gamma, varAngle);
140   G4complex order1 = -0.5*med*fPlateThick/Z1 - 0.125*sa*sa/Z1/Z1;
141 
142   G4complex Z2   = GetGasComplexFZ( energy, gamma, varAngle);
143   G4complex order2 = -0.5*med*fGasThick/Z2 - 0.125*sb*sb/Z2/Z2;
144 
145   G4complex ordernn = ( order1 + order2 )*nn;
146 
147   G4complex Ha = std::exp( order1 );
148   G4complex Hb = std::exp( order2 );
149   G4complex H  = Ha * Hb;
150   G4complex Hn = std::exp( ordernn );
151   
152   G4complex F1 = ( 1.0 - Ha ) * ( 1.0 - Hb ) * nn / ( 1. - H );
153   
154   G4complex F2 = ( 1.0 - Ha ) * ( 1.0 - Ha ) * Hb * ( 1. - Hn ) / ( 1. - H ) / ( 1. - H );
155   
156   G4complex R = (F1 + F2) * OneInterfaceXTRdEdx(energy, gamma, varAngle);
157   
158   result      = 2.0 * std::real(R);
159   
160   return result;
161 }
162