Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4EmBiasingManager 33 // 34 // Author: Vladimir Ivanchenko 35 // 36 // Creation date: 28.07.2011 37 // 38 // Modifications: 39 // 40 // 31-05-12 D. Sawkey put back in high energy limit for brem, russian roulette 41 // 30-05-12 D. Sawkey brem split gammas are unique; do weight tests for 42 // brem, russian roulette 43 // ------------------------------------------------------------------- 44 // 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 48 #include "G4EmBiasingManager.hh" 49 #include "G4SystemOfUnits.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4MaterialCutsCouple.hh" 52 #include "G4ProductionCutsTable.hh" 53 #include "G4ProductionCuts.hh" 54 #include "G4Region.hh" 55 #include "G4RegionStore.hh" 56 #include "G4Track.hh" 57 #include "G4Electron.hh" 58 #include "G4Gamma.hh" 59 #include "G4VEmModel.hh" 60 #include "G4LossTableManager.hh" 61 #include "G4ParticleChangeForLoss.hh" 62 #include "G4ParticleChangeForGamma.hh" 63 #include "G4EmParameters.hh" 64 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 66 67 G4EmBiasingManager::G4EmBiasingManager() 68 : fDirectionalSplittingTarget(0.0,0.0,0.0) 69 { 70 fSafetyMin = 1.e-6*mm; 71 theElectron = G4Electron::Electron(); 72 theGamma = G4Gamma::Gamma(); 73 } 74 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 76 77 G4EmBiasingManager::~G4EmBiasingManager() = default; 78 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 80 81 void G4EmBiasingManager::Initialise(const G4ParticleDefinition& part, 82 const G4String& procName, G4int verbose) 83 { 84 //G4cout << "G4EmBiasingManager::Initialise for " 85 // << part.GetParticleName() 86 // << " and " << procName << G4endl; 87 const G4ProductionCutsTable* theCoupleTable= 88 G4ProductionCutsTable::GetProductionCutsTable(); 89 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize(); 90 91 if(0 < nForcedRegions) { idxForcedCouple.resize(numOfCouples, -1); } 92 if(0 < nSecBiasedRegions) { idxSecBiasedCouple.resize(numOfCouples, -1); } 93 94 // Deexcitation 95 for (G4int j=0; j<numOfCouples; ++j) { 96 const G4MaterialCutsCouple* couple = 97 theCoupleTable->GetMaterialCutsCouple(j); 98 const G4ProductionCuts* pcuts = couple->GetProductionCuts(); 99 if(0 < nForcedRegions) { 100 for(G4int i=0; i<nForcedRegions; ++i) { 101 if(forcedRegions[i]) { 102 if(pcuts == forcedRegions[i]->GetProductionCuts()) { 103 idxForcedCouple[j] = i; 104 break; 105 } 106 } 107 } 108 } 109 if(0 < nSecBiasedRegions) { 110 for(G4int i=0; i<nSecBiasedRegions; ++i) { 111 if(secBiasedRegions[i]) { 112 if(pcuts == secBiasedRegions[i]->GetProductionCuts()) { 113 idxSecBiasedCouple[j] = i; 114 break; 115 } 116 } 117 } 118 } 119 } 120 121 G4EmParameters* param = G4EmParameters::Instance(); 122 SetDirectionalSplitting(param->GetDirectionalSplitting()); 123 if (fDirectionalSplitting) { 124 SetDirectionalSplittingTarget(param->GetDirectionalSplittingTarget()); 125 SetDirectionalSplittingRadius(param->GetDirectionalSplittingRadius()); 126 } 127 128 if (nForcedRegions > 0 && 0 < verbose) { 129 G4cout << " Forced Interaction is activated for " 130 << part.GetParticleName() << " and " 131 << procName 132 << " inside G4Regions: " << G4endl; 133 for (G4int i=0; i<nForcedRegions; ++i) { 134 const G4Region* r = forcedRegions[i]; 135 if(r) { G4cout << " " << r->GetName() << G4endl; } 136 } 137 } 138 if (nSecBiasedRegions > 0 && 0 < verbose) { 139 G4cout << " Secondary biasing is activated for " 140 << part.GetParticleName() << " and " 141 << procName 142 << " inside G4Regions: " << G4endl; 143 for (G4int i=0; i<nSecBiasedRegions; ++i) { 144 const G4Region* r = secBiasedRegions[i]; 145 if(r) { 146 G4cout << " " << r->GetName() 147 << " BiasingWeight= " << secBiasedWeight[i] << G4endl; 148 } 149 } 150 if (fDirectionalSplitting) { 151 G4cout << " Directional splitting activated, with target position: " 152 << fDirectionalSplittingTarget/cm 153 << " cm; radius: " 154 << fDirectionalSplittingRadius/cm 155 << "cm." << G4endl; 156 } 157 } 158 } 159 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 161 162 void G4EmBiasingManager::ActivateForcedInteraction(G4double val, 163 const G4String& rname) 164 { 165 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 166 G4String name = rname; 167 if(name == "" || name == "world" || name == "World") { 168 name = "DefaultRegionForTheWorld"; 169 } 170 const G4Region* reg = regionStore->GetRegion(name, false); 171 if(!reg) { 172 G4cout << "### G4EmBiasingManager::ForcedInteraction WARNING: " 173 << " G4Region <" 174 << rname << "> is unknown" << G4endl; 175 return; 176 } 177 178 // the region is in the list 179 if (0 < nForcedRegions) { 180 for (G4int i=0; i<nForcedRegions; ++i) { 181 if (reg == forcedRegions[i]) { 182 lengthForRegion[i] = val; 183 return; 184 } 185 } 186 } 187 if(val < 0.0) { 188 G4cout << "### G4EmBiasingManager::ForcedInteraction WARNING: " 189 << val << " < 0.0, so no activation for the G4Region <" 190 << rname << ">" << G4endl; 191 return; 192 } 193 194 // new region 195 forcedRegions.push_back(reg); 196 lengthForRegion.push_back(val); 197 ++nForcedRegions; 198 } 199 200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 201 202 void 203 G4EmBiasingManager::ActivateSecondaryBiasing(const G4String& rname, 204 G4double factor, 205 G4double energyLimit) 206 { 207 //G4cout << "G4EmBiasingManager::ActivateSecondaryBiasing: " 208 // << rname << " F= " << factor << " E(MeV)= " << energyLimit/MeV 209 // << G4endl; 210 G4RegionStore* regionStore = G4RegionStore::GetInstance(); 211 G4String name = rname; 212 if(name == "" || name == "world" || name == "World") { 213 name = "DefaultRegionForTheWorld"; 214 } 215 const G4Region* reg = regionStore->GetRegion(name, false); 216 if(!reg) { 217 G4cout << "### G4EmBiasingManager::ActivateBremsstrahlungSplitting " 218 << "WARNING: G4Region <" 219 << rname << "> is unknown" << G4endl; 220 return; 221 } 222 223 // Range cut 224 G4int nsplit = 0; 225 G4double w = factor; 226 227 // splitting 228 if(factor >= 1.0) { 229 nsplit = G4lrint(factor); 230 w = 1.0/G4double(nsplit); 231 232 // Russian roulette 233 } else if(0.0 < factor) { 234 nsplit = 1; 235 w = 1.0/factor; 236 } 237 238 // the region is in the list - overwrite parameters 239 if (0 < nSecBiasedRegions) { 240 for (G4int i=0; i<nSecBiasedRegions; ++i) { 241 if (reg == secBiasedRegions[i]) { 242 secBiasedWeight[i] = w; 243 nBremSplitting[i] = nsplit; 244 secBiasedEnegryLimit[i] = energyLimit; 245 return; 246 } 247 } 248 } 249 /* 250 G4cout << "### G4EmBiasingManager::ActivateSecondaryBiasing: " 251 << " nsplit= " << nsplit << " for the G4Region <" 252 << rname << ">" << G4endl; 253 */ 254 255 // new region 256 secBiasedRegions.push_back(reg); 257 secBiasedWeight.push_back(w); 258 nBremSplitting.push_back(nsplit); 259 secBiasedEnegryLimit.push_back(energyLimit); 260 ++nSecBiasedRegions; 261 //G4cout << "nSecBiasedRegions= " << nSecBiasedRegions << G4endl; 262 } 263 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 265 266 G4double G4EmBiasingManager::GetStepLimit(G4int coupleIdx, 267 G4double previousStep) 268 { 269 if(startTracking) { 270 startTracking = false; 271 G4int i = idxForcedCouple[coupleIdx]; 272 if(i < 0) { 273 currentStepLimit = DBL_MAX; 274 } else { 275 currentStepLimit = lengthForRegion[i]; 276 if(currentStepLimit > 0.0) { currentStepLimit *= G4UniformRand(); } 277 } 278 } else { 279 currentStepLimit -= previousStep; 280 } 281 if(currentStepLimit < 0.0) { currentStepLimit = 0.0; } 282 return currentStepLimit; 283 } 284 285 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 286 287 G4double 288 G4EmBiasingManager::ApplySecondaryBiasing( 289 std::vector<G4DynamicParticle*>& vd, 290 const G4Track& track, 291 G4VEmModel* currentModel, 292 G4ParticleChangeForLoss* pPartChange, 293 G4double& eloss, 294 G4int coupleIdx, 295 G4double tcut, 296 G4double safety) 297 { 298 G4int index = idxSecBiasedCouple[coupleIdx]; 299 G4double weight = 1.; 300 if(0 <= index) { 301 std::size_t n = vd.size(); 302 303 // the check cannot be applied per secondary particle 304 // because weight correction is common, so the first 305 // secondary is checked 306 if((0 < n && vd[0]->GetKineticEnergy() < secBiasedEnegryLimit[index]) 307 || fDirectionalSplitting) { 308 309 G4int nsplit = nBremSplitting[index]; 310 311 // Range cut 312 if(0 == nsplit) { 313 if(safety > fSafetyMin) { ApplyRangeCut(vd, track, eloss, safety); } 314 315 // Russian Roulette 316 } else if(1 == nsplit) { 317 weight = ApplyRussianRoulette(vd, index); 318 319 // Splitting 320 } else { 321 if (fDirectionalSplitting) { 322 weight = ApplyDirectionalSplitting(vd, track, currentModel, index, tcut); 323 } else { 324 G4double tmpEnergy = pPartChange->GetProposedKineticEnergy(); 325 G4ThreeVector tmpMomDir = pPartChange->GetProposedMomentumDirection(); 326 327 weight = ApplySplitting(vd, track, currentModel, index, tcut); 328 329 pPartChange->SetProposedKineticEnergy(tmpEnergy); 330 pPartChange->ProposeMomentumDirection(tmpMomDir); 331 } 332 } 333 } 334 } 335 return weight; 336 } 337 338 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 339 340 G4double 341 G4EmBiasingManager::ApplySecondaryBiasing( 342 std::vector<G4DynamicParticle*>& vd, 343 const G4Track& track, 344 G4VEmModel* currentModel, 345 G4ParticleChangeForGamma* pPartChange, 346 G4double& eloss, 347 G4int coupleIdx, 348 G4double tcut, 349 G4double safety) 350 { 351 G4int index = idxSecBiasedCouple[coupleIdx]; 352 G4double weight = 1.; 353 if(0 <= index) { 354 std::size_t n = vd.size(); 355 356 // the check cannot be applied per secondary particle 357 // because weight correction is common, so the first 358 // secondary is checked 359 if((0 < n && vd[0]->GetKineticEnergy() < secBiasedEnegryLimit[index]) 360 || fDirectionalSplitting) { 361 362 G4int nsplit = nBremSplitting[index]; 363 364 // Range cut 365 if(0 == nsplit) { 366 if(safety > fSafetyMin) { ApplyRangeCut(vd, track, eloss, safety); } 367 368 // Russian Roulette 369 } else if(1 == nsplit) { 370 weight = ApplyRussianRoulette(vd, index); 371 372 // Splitting 373 } else { 374 if (fDirectionalSplitting) { 375 weight = ApplyDirectionalSplitting(vd, track, currentModel, 376 index, tcut, pPartChange); 377 } else { 378 G4double tmpEnergy = pPartChange->GetProposedKineticEnergy(); 379 G4ThreeVector tmpMomDir = pPartChange->GetProposedMomentumDirection(); 380 381 weight = ApplySplitting(vd, track, currentModel, index, tcut); 382 383 pPartChange->SetProposedKineticEnergy(tmpEnergy); 384 pPartChange->ProposeMomentumDirection(tmpMomDir); 385 } 386 } 387 } 388 } 389 return weight; 390 } 391 392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 393 394 G4double 395 G4EmBiasingManager::ApplySecondaryBiasing(std::vector<G4Track*>& track, 396 G4int coupleIdx) 397 { 398 G4int index = idxSecBiasedCouple[coupleIdx]; 399 G4double weight = 1.; 400 if(0 <= index) { 401 std::size_t n = track.size(); 402 403 // the check cannot be applied per secondary particle 404 // because weight correction is common, so the first 405 // secondary is checked 406 if(0 < n && track[0]->GetKineticEnergy() < secBiasedEnegryLimit[index]) { 407 408 G4int nsplit = nBremSplitting[index]; 409 410 // Russian Roulette only 411 if(1 == nsplit) { 412 weight = secBiasedWeight[index]; 413 for(std::size_t k=0; k<n; ++k) { 414 if(G4UniformRand()*weight > 1.0) { 415 const G4Track* t = track[k]; 416 delete t; 417 track[k] = nullptr; 418 } 419 } 420 } 421 } 422 } 423 return weight; 424 } 425 426 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 427 428 void 429 G4EmBiasingManager::ApplyRangeCut(std::vector<G4DynamicParticle*>& vd, 430 const G4Track& track, 431 G4double& eloss, G4double safety) 432 { 433 std::size_t n = vd.size(); 434 if(!eIonisation) { 435 eIonisation = 436 G4LossTableManager::Instance()->GetEnergyLossProcess(theElectron); 437 } 438 if(eIonisation) { 439 for(std::size_t k=0; k<n; ++k) { 440 const G4DynamicParticle* dp = vd[k]; 441 if(dp->GetDefinition() == theElectron) { 442 G4double e = dp->GetKineticEnergy(); 443 if(eIonisation->GetRange(e, track.GetMaterialCutsCouple()) < safety) { 444 eloss += e; 445 delete dp; 446 vd[k] = nullptr; 447 } 448 } 449 } 450 } 451 } 452 453 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 454 455 G4bool G4EmBiasingManager::CheckDirection(G4ThreeVector pos, 456 G4ThreeVector momdir) const 457 { 458 G4ThreeVector delta = fDirectionalSplittingTarget - pos; 459 G4double angle = momdir.angle(delta); 460 G4double dist = delta.cross(momdir).mag(); 461 if (dist <= fDirectionalSplittingRadius && angle < halfpi) { 462 return true; 463 } 464 return false; 465 } 466 467 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 468 469 G4double 470 G4EmBiasingManager::ApplySplitting(std::vector<G4DynamicParticle*>& vd, 471 const G4Track& track, 472 G4VEmModel* currentModel, 473 G4int index, 474 G4double tcut) 475 { 476 // method is applied only if 1 secondary created PostStep 477 // in the case of many secondaries there is a contradiction 478 G4double weight = 1.; 479 std::size_t n = vd.size(); 480 G4double w = secBiasedWeight[index]; 481 482 if(1 != n || 1.0 <= w) { return weight; } 483 484 G4double trackWeight = track.GetWeight(); 485 const G4DynamicParticle* dynParticle = track.GetDynamicParticle(); 486 487 G4int nsplit = nBremSplitting[index]; 488 489 // double splitting is suppressed 490 if(1 < nsplit && trackWeight>w) { 491 492 weight = w; 493 if(nsplit > (G4int)tmpSecondaries.size()) { 494 tmpSecondaries.reserve(nsplit); 495 } 496 const G4MaterialCutsCouple* couple = track.GetMaterialCutsCouple(); 497 // start from 1, because already one secondary created 498 for(G4int k=1; k<nsplit; ++k) { 499 tmpSecondaries.clear(); 500 currentModel->SampleSecondaries(&tmpSecondaries, couple, dynParticle, 501 tcut); 502 for (std::size_t kk=0; kk<tmpSecondaries.size(); ++kk) { 503 vd.push_back(tmpSecondaries[kk]); 504 } 505 } 506 } 507 return weight; 508 } 509 510 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 511 512 G4double 513 G4EmBiasingManager::ApplyDirectionalSplitting( 514 std::vector<G4DynamicParticle*>& vd, 515 const G4Track& track, 516 G4VEmModel* currentModel, 517 G4int index, 518 G4double tcut, 519 G4ParticleChangeForGamma* partChange) 520 { 521 // primary is gamma. do splitting/RR as appropriate 522 // method applied for any number of secondaries 523 524 G4double weight = 1.0; 525 G4double w = secBiasedWeight[index]; 526 527 fDirectionalSplittingWeights.clear(); 528 if(1.0 <= w) { 529 fDirectionalSplittingWeights.push_back(weight); 530 return weight; 531 } 532 533 G4double trackWeight = track.GetWeight(); 534 G4int nsplit = nBremSplitting[index]; 535 536 // double splitting is suppressed 537 if(1 < nsplit && trackWeight>w) { 538 539 weight = w; 540 const G4ThreeVector pos = track.GetPosition(); 541 542 G4bool foundPrimaryParticle = false; 543 G4double primaryEnergy = 0.; 544 G4ThreeVector primaryMomdir(0.,0.,0.); 545 G4double primaryWeight = trackWeight; 546 547 tmpSecondaries = vd; 548 vd.clear(); 549 vd.reserve(nsplit); 550 for (G4int k=0; k<nsplit; ++k) { 551 if (k>0) { // for k==0, SampleSecondaries has already been called 552 tmpSecondaries.clear(); 553 // SampleSecondaries modifies primary info stored in partChange 554 currentModel->SampleSecondaries(&tmpSecondaries, 555 track.GetMaterialCutsCouple(), 556 track.GetDynamicParticle(), tcut); 557 } 558 for (std::size_t kk=0; kk<tmpSecondaries.size(); ++kk) { 559 if (tmpSecondaries[kk]->GetParticleDefinition() == theGamma) { 560 if (CheckDirection(pos, tmpSecondaries[kk]->GetMomentumDirection())){ 561 vd.push_back(tmpSecondaries[kk]); 562 fDirectionalSplittingWeights.push_back(1.); 563 } else if (G4UniformRand() < w) { 564 vd.push_back(tmpSecondaries[kk]); 565 fDirectionalSplittingWeights.push_back(1./weight); 566 } else { 567 delete tmpSecondaries[kk]; 568 tmpSecondaries[kk] = nullptr; 569 } 570 } else if (k==0) { // keep charged 2ry from first splitting 571 vd.push_back(tmpSecondaries[kk]); 572 fDirectionalSplittingWeights.push_back(1./weight); 573 } else { 574 delete tmpSecondaries[kk]; 575 tmpSecondaries[kk] = nullptr; 576 } 577 } 578 579 // primary 580 G4double en = partChange->GetProposedKineticEnergy(); 581 if (en>0.) { // don't add if kinetic energy = 0 582 G4ThreeVector momdir = partChange->GetProposedMomentumDirection(); 583 if (CheckDirection(pos,momdir)) { 584 // keep only one primary; others are secondaries 585 if (!foundPrimaryParticle) { 586 primaryEnergy = en; 587 primaryMomdir = momdir; 588 foundPrimaryParticle = true; 589 primaryWeight = weight; 590 } else { 591 auto dp = new G4DynamicParticle(theGamma, 592 partChange->GetProposedMomentumDirection(), 593 partChange->GetProposedKineticEnergy()); 594 vd.push_back(dp); 595 fDirectionalSplittingWeights.push_back(1.); 596 } 597 } else if (G4UniformRand()<w) { // not going to target. play RR. 598 if (!foundPrimaryParticle) { 599 foundPrimaryParticle = true; 600 primaryEnergy = en; 601 primaryMomdir = momdir; 602 primaryWeight = 1.; 603 } else { 604 auto dp = new G4DynamicParticle(theGamma, 605 partChange->GetProposedMomentumDirection(), 606 partChange->GetProposedKineticEnergy()); 607 vd.push_back(dp); 608 fDirectionalSplittingWeights.push_back(1./weight); 609 } 610 } 611 } 612 } // end of loop over nsplit 613 614 partChange->ProposeWeight(primaryWeight); 615 partChange->SetProposedKineticEnergy(primaryEnergy); 616 partChange->ProposeMomentumDirection(primaryMomdir); 617 } else { 618 for (std::size_t i = 0; i < vd.size(); ++i) { 619 fDirectionalSplittingWeights.push_back(1.); 620 } 621 } 622 623 return weight; 624 } 625 626 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 627 628 G4double G4EmBiasingManager::GetWeight(G4int i) 629 { 630 // normally return 1. If a directionally split particle survives RR, 631 // return 1./(splitting factor) 632 if (fDirectionalSplittingWeights.size() >= (unsigned int)(i+1) ) { 633 G4double w = fDirectionalSplittingWeights[i]; 634 fDirectionalSplittingWeights[i] = 1.; // ensure it's not used again 635 return w; 636 } else { 637 return 1.; 638 } 639 } 640 641 G4double 642 G4EmBiasingManager::ApplyDirectionalSplitting( 643 std::vector<G4DynamicParticle*>& vd, 644 const G4Track& track, 645 G4VEmModel* currentModel, 646 G4int index, 647 G4double tcut) 648 { 649 // primary is not a gamma. Do nothing with primary 650 651 G4double weight = 1.0; 652 G4double w = secBiasedWeight[index]; 653 654 fDirectionalSplittingWeights.clear(); 655 if(1.0 <= w) { 656 fDirectionalSplittingWeights.push_back(weight); 657 return weight; 658 } 659 660 G4double trackWeight = track.GetWeight(); 661 G4int nsplit = nBremSplitting[index]; 662 663 // double splitting is suppressed 664 if(1 < nsplit && trackWeight>w) { 665 666 weight = w; 667 const G4ThreeVector pos = track.GetPosition(); 668 669 tmpSecondaries = vd; 670 vd.clear(); 671 vd.reserve(nsplit); 672 for (G4int k=0; k<nsplit; ++k) { 673 if (k>0) { 674 tmpSecondaries.clear(); 675 currentModel->SampleSecondaries(&tmpSecondaries, 676 track.GetMaterialCutsCouple(), 677 track.GetDynamicParticle(), tcut); 678 } 679 //for (auto sec : tmpSecondaries) { 680 for (std::size_t kk=0; kk < tmpSecondaries.size(); ++kk) { 681 if (CheckDirection(pos, tmpSecondaries[kk]->GetMomentumDirection())) { 682 vd.push_back(tmpSecondaries[kk]); 683 fDirectionalSplittingWeights.push_back(1.); 684 } else if (G4UniformRand()<w) { 685 vd.push_back(tmpSecondaries[kk]); 686 fDirectionalSplittingWeights.push_back(1./weight); 687 } else { 688 delete tmpSecondaries[kk]; 689 tmpSecondaries[kk] = nullptr; 690 } 691 } 692 } // end of loop over nsplit 693 } else { // no splitting was done; still need weights 694 for (std::size_t i = 0; i < vd.size(); ++i) { 695 fDirectionalSplittingWeights.push_back(1.0); 696 } 697 } 698 return weight; 699 } 700