Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4eCoulombScatteringModel 33 // 34 // Author: Vladimir Ivanchenko 35 // 36 // Creation date: 22.08.2005 37 // 38 // Modifications: V.Ivanchenko 39 // 40 // 41 // 42 // Class Description: 43 // 44 // ------------------------------------------------------------------- 45 // 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 48 49 #include "G4eCoulombScatteringModel.hh" 50 #include "G4PhysicalConstants.hh" 51 #include "G4SystemOfUnits.hh" 52 #include "Randomize.hh" 53 #include "G4DataVector.hh" 54 #include "G4ElementTable.hh" 55 #include "G4ParticleChangeForGamma.hh" 56 #include "G4Proton.hh" 57 #include "G4ParticleTable.hh" 58 #include "G4IonTable.hh" 59 #include "G4ProductionCutsTable.hh" 60 #include "G4NucleiProperties.hh" 61 #include "G4Pow.hh" 62 #include "G4NistManager.hh" 63 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 65 66 using namespace std; 67 68 G4eCoulombScatteringModel::G4eCoulombScatteringModel(G4bool combined) 69 : G4VEmModel("eCoulombScattering"), isCombined(combined) 70 { 71 fNistManager = G4NistManager::Instance(); 72 theIonTable = G4ParticleTable::GetParticleTable()->GetIonTable(); 73 theProton = G4Proton::Proton(); 74 75 wokvi = new G4WentzelOKandVIxSection(isCombined); 76 77 mass = CLHEP::proton_mass_c2; 78 } 79 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 82 G4eCoulombScatteringModel::~G4eCoulombScatteringModel() 83 { 84 delete wokvi; 85 } 86 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 88 89 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* part, 90 const G4DataVector& cuts) 91 { 92 SetupParticle(part); 93 currentCouple = nullptr; 94 95 G4double tet = PolarAngleLimit(); 96 97 // defined theta limit between single and multiple scattering 98 if(isCombined) { 99 if(tet >= CLHEP::pi) { cosThetaMin = -1.0; } 100 else if(tet > 0.0) { cosThetaMin = std::cos(tet); } 101 102 // single scattering without multiple 103 } else if(tet > 0.0) { 104 cosThetaMin = std::cos(std::min(tet, CLHEP::pi)); 105 } 106 107 wokvi->Initialise(part, cosThetaMin); 108 pCuts = &cuts; 109 /* 110 G4cout << "G4eCoulombScatteringModel::Initialise for " 111 << part->GetParticleName() << " 1-cos(TetMin)= " << 1.0 - cosThetaMin 112 << " 1-cos(TetMax)= " << 1. - cosThetaMax << G4endl; 113 G4cout << "cut[0]= " << (*pCuts)[0] << G4endl; 114 */ 115 if(nullptr == fParticleChange) { 116 fParticleChange = GetParticleChangeForGamma(); 117 } 118 if(IsMaster() && mass < GeV && part->GetParticleName() != "GenericIon") { 119 InitialiseElementSelectors(part, cuts); 120 } 121 } 122 123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 124 125 void G4eCoulombScatteringModel::InitialiseLocal(const G4ParticleDefinition*, 126 G4VEmModel* masterModel) 127 { 128 SetElementSelectors(masterModel->GetElementSelectors()); 129 } 130 131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 132 133 G4double 134 G4eCoulombScatteringModel::MinPrimaryEnergy(const G4Material* material, 135 const G4ParticleDefinition* part, 136 G4double) 137 { 138 SetupParticle(part); 139 140 // define cut using cuts for proton 141 G4double cut = 142 std::max(recoilThreshold, (*pCuts)[CurrentCouple()->GetIndex()]); 143 144 // find out lightest element 145 const G4ElementVector* theElementVector = material->GetElementVector(); 146 std::size_t nelm = material->GetNumberOfElements(); 147 148 // select lightest element 149 G4int Z = 300; 150 for (std::size_t j=0; j<nelm; ++j) { 151 Z = std::min(Z,(*theElementVector)[j]->GetZasInt()); 152 } 153 G4int A = G4lrint(fNistManager->GetAtomicMassAmu(Z)); 154 G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z); 155 G4double t = std::max(cut, 0.5*(cut + sqrt(2*cut*targetMass))); 156 157 return t; 158 } 159 160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 161 162 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom( 163 const G4ParticleDefinition* p, 164 G4double kinEnergy, 165 G4double Z, G4double, 166 G4double cutEnergy, G4double) 167 { 168 /* 169 G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom for " 170 << p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV 171 << G4endl; 172 */ 173 G4double cross = 0.0; 174 elecRatio = 0.0; 175 if(p != particle) { SetupParticle(p); } 176 177 // cross section is set to zero to avoid problems in sample secondary 178 if(kinEnergy <= 0.0) { return cross; } 179 DefineMaterial(CurrentCouple()); 180 G4double costmin = wokvi->SetupKinematic(kinEnergy, currentMaterial); 181 182 //G4cout << "cosThetaMax= "<<cosThetaMax<<" costmin= "<<costmin<< G4endl; 183 184 if(cosThetaMax < costmin) { 185 G4int iz = G4lrint(Z); 186 G4double cut = (0.0 < fixedCut) ? fixedCut : cutEnergy; 187 costmin = wokvi->SetupTarget(iz, cut); 188 //G4cout << "SetupTarget: Z= " << iz << " cut= " << cut << " " 189 // << costmin << G4endl; 190 G4double costmax = (1 == iz && particle == theProton && cosThetaMax < 0.0) 191 ? 0.0 : cosThetaMax; 192 if(costmin > costmax) { 193 cross = wokvi->ComputeNuclearCrossSection(costmin, costmax) 194 + wokvi->ComputeElectronCrossSection(costmin, costmax); 195 } 196 /* 197 if(p->GetParticleName() == "e-") 198 G4cout << "Z= " << Z << " e(MeV)= " << kinEnergy/MeV 199 << " cross(b)= " << cross/barn << " 1-costmin= " << 1-costmin 200 << " 1-costmax= " << 1-costmax 201 << " 1-cosThetaMax= " << 1-cosThetaMax 202 << " " << currentMaterial->GetName() 203 << G4endl; 204 */ 205 } 206 //G4cout << "====== cross= " << cross << G4endl; 207 return cross; 208 } 209 210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 211 212 void G4eCoulombScatteringModel::SampleSecondaries( 213 std::vector<G4DynamicParticle*>* fvect, 214 const G4MaterialCutsCouple* couple, 215 const G4DynamicParticle* dp, 216 G4double cutEnergy, 217 G4double) 218 { 219 G4double kinEnergy = dp->GetKineticEnergy(); 220 SetupParticle(dp->GetDefinition()); 221 DefineMaterial(couple); 222 /* 223 G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " 224 << kinEnergy << " " << particle->GetParticleName() 225 << " cut= " << cutEnergy<< G4endl; 226 */ 227 // Choose nucleus 228 G4double cut = (0.0 < fixedCut) ? fixedCut : cutEnergy; 229 230 wokvi->SetupKinematic(kinEnergy, currentMaterial); 231 232 const G4Element* currentElement = SelectTargetAtom(couple,particle,kinEnergy, 233 dp->GetLogKineticEnergy(),cut,kinEnergy); 234 G4int iz = currentElement->GetZasInt(); 235 236 G4double costmin = wokvi->SetupTarget(iz, cut); 237 G4double costmax = (1 == iz && particle == theProton && cosThetaMax < 0.0) 238 ? 0.0 : cosThetaMax; 239 if(costmin <= costmax) { return; } 240 241 G4double cross = wokvi->ComputeNuclearCrossSection(costmin, costmax); 242 G4double ecross = wokvi->ComputeElectronCrossSection(costmin, costmax); 243 G4double ratio = ecross/(cross + ecross); 244 245 G4int ia = SelectIsotopeNumber(currentElement); 246 G4double targetMass = G4NucleiProperties::GetNuclearMass(ia, iz); 247 wokvi->SetTargetMass(targetMass); 248 249 G4ThreeVector newDirection = 250 wokvi->SampleSingleScattering(costmin, costmax, ratio); 251 G4double cost = newDirection.z(); 252 /* 253 G4cout << "SampleSec: e(MeV)= " << kinEnergy/MeV 254 << " 1-costmin= " << 1-costmin 255 << " 1-costmax= " << 1-costmax 256 << " 1-cost= " << 1-cost 257 << " ratio= " << ratio 258 << G4endl; 259 */ 260 G4ThreeVector direction = dp->GetMomentumDirection(); 261 newDirection.rotateUz(direction); 262 263 fParticleChange->ProposeMomentumDirection(newDirection); 264 265 // recoil sampling assuming a small recoil 266 // and first order correction to primary 4-momentum 267 G4double mom2 = wokvi->GetMomentumSquare(); 268 G4double trec = mom2*(1.0 - cost) 269 /(targetMass + (mass + kinEnergy)*(1.0 - cost)); 270 271 // the check likely not needed 272 trec = std::min(trec, kinEnergy); 273 G4double finalT = kinEnergy - trec; 274 G4double edep = 0.0; 275 /* 276 G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= " 277 <<trec << " Z= " << iz << " A= " << ia 278 << " tcut(keV)= " << (*pCuts)[currentMaterialIndex]/keV << G4endl; 279 */ 280 G4double tcut = recoilThreshold; 281 if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); } 282 283 if(trec > tcut) { 284 G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0); 285 G4ThreeVector dir = (direction*sqrt(mom2) - 286 newDirection*sqrt(finalT*(2*mass + finalT))).unit(); 287 auto newdp = new G4DynamicParticle(ion, dir, trec); 288 fvect->push_back(newdp); 289 } else { 290 edep = trec; 291 fParticleChange->ProposeNonIonizingEnergyDeposit(edep); 292 } 293 294 // finelize primary energy and energy balance 295 // this threshold may be applied only because for low-enegry 296 // e+e- msc model is applied 297 if(finalT < 0.0) { 298 edep += finalT; 299 finalT = 0.0; 300 } 301 edep = std::max(edep, 0.0); 302 fParticleChange->SetProposedKineticEnergy(finalT); 303 fParticleChange->ProposeLocalEnergyDeposit(edep); 304 } 305 306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 307