Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4eCoulombScatteringModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:     G4eCoulombScatteringModel
 33 //
 34 // Author:        Vladimir Ivanchenko 
 35 //
 36 // Creation date: 22.08.2005
 37 //
 38 // Modifications: V.Ivanchenko
 39 //
 40 //
 41 //
 42 // Class Description:
 43 //
 44 // -------------------------------------------------------------------
 45 //
 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48 
 49 #include "G4eCoulombScatteringModel.hh"
 50 #include "G4PhysicalConstants.hh"
 51 #include "G4SystemOfUnits.hh"
 52 #include "Randomize.hh"
 53 #include "G4DataVector.hh"
 54 #include "G4ElementTable.hh"
 55 #include "G4ParticleChangeForGamma.hh"
 56 #include "G4Proton.hh"
 57 #include "G4ParticleTable.hh"
 58 #include "G4IonTable.hh"
 59 #include "G4ProductionCutsTable.hh"
 60 #include "G4NucleiProperties.hh"
 61 #include "G4Pow.hh"
 62 #include "G4NistManager.hh"
 63 
 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 65 
 66 using namespace std;
 67 
 68 G4eCoulombScatteringModel::G4eCoulombScatteringModel(G4bool combined)
 69   : G4VEmModel("eCoulombScattering"), isCombined(combined)
 70 {
 71   fNistManager = G4NistManager::Instance();
 72   theIonTable  = G4ParticleTable::GetParticleTable()->GetIonTable();
 73   theProton    = G4Proton::Proton();
 74 
 75   wokvi = new G4WentzelOKandVIxSection(isCombined);
 76 
 77   mass = CLHEP::proton_mass_c2;
 78 }
 79 
 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 81 
 82 G4eCoulombScatteringModel::~G4eCoulombScatteringModel()
 83 {
 84   delete wokvi;
 85 }
 86 
 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 88 
 89 void G4eCoulombScatteringModel::Initialise(const G4ParticleDefinition* part,
 90              const G4DataVector& cuts)
 91 {
 92   SetupParticle(part);
 93   currentCouple = nullptr;
 94 
 95   G4double tet = PolarAngleLimit();
 96 
 97   // defined theta limit between single and multiple scattering 
 98   if(isCombined) {
 99     if(tet >= CLHEP::pi) { cosThetaMin = -1.0; }
100     else if(tet > 0.0) { cosThetaMin = std::cos(tet); }
101 
102     // single scattering without multiple
103   } else if(tet > 0.0) { 
104     cosThetaMin = std::cos(std::min(tet, CLHEP::pi));
105   }
106 
107   wokvi->Initialise(part, cosThetaMin);
108   pCuts = &cuts;
109   /*
110   G4cout << "G4eCoulombScatteringModel::Initialise for " 
111      << part->GetParticleName() << " 1-cos(TetMin)= " << 1.0 - cosThetaMin 
112      << " 1-cos(TetMax)= " << 1. - cosThetaMax << G4endl;
113   G4cout << "cut[0]= " << (*pCuts)[0] << G4endl;
114   */
115   if(nullptr == fParticleChange) {
116     fParticleChange = GetParticleChangeForGamma();
117   }
118   if(IsMaster() && mass < GeV && part->GetParticleName() != "GenericIon") {
119     InitialiseElementSelectors(part, cuts);
120   }
121 }
122 
123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124 
125 void G4eCoulombScatteringModel::InitialiseLocal(const G4ParticleDefinition*, 
126             G4VEmModel* masterModel)
127 {
128   SetElementSelectors(masterModel->GetElementSelectors());
129 }
130 
131 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
132 
133 G4double 
134 G4eCoulombScatteringModel::MinPrimaryEnergy(const G4Material* material,
135               const G4ParticleDefinition* part,
136               G4double)
137 {
138   SetupParticle(part);
139 
140   // define cut using cuts for proton
141   G4double cut = 
142     std::max(recoilThreshold, (*pCuts)[CurrentCouple()->GetIndex()]);
143 
144   // find out lightest element
145   const G4ElementVector* theElementVector = material->GetElementVector();
146   std::size_t nelm = material->GetNumberOfElements();
147 
148   // select lightest element
149   G4int Z = 300;
150   for (std::size_t j=0; j<nelm; ++j) {
151     Z = std::min(Z,(*theElementVector)[j]->GetZasInt());
152   }
153   G4int A = G4lrint(fNistManager->GetAtomicMassAmu(Z));
154   G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z);
155   G4double t = std::max(cut, 0.5*(cut + sqrt(2*cut*targetMass)));
156 
157   return t;
158 }
159 
160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161 
162 G4double G4eCoulombScatteringModel::ComputeCrossSectionPerAtom(
163                 const G4ParticleDefinition* p,
164     G4double kinEnergy,
165     G4double Z, G4double,
166     G4double cutEnergy, G4double)
167 {
168   /*  
169   G4cout << "### G4eCoulombScatteringModel::ComputeCrossSectionPerAtom  for " 
170    << p->GetParticleName()<<" Z= "<<Z<<" e(MeV)= "<< kinEnergy/MeV 
171    << G4endl; 
172   */
173   G4double cross = 0.0;
174   elecRatio = 0.0;
175   if(p != particle) { SetupParticle(p); }
176 
177   // cross section is set to zero to avoid problems in sample secondary
178   if(kinEnergy <= 0.0) { return cross; }
179   DefineMaterial(CurrentCouple());
180   G4double costmin = wokvi->SetupKinematic(kinEnergy, currentMaterial);
181 
182   //G4cout << "cosThetaMax= "<<cosThetaMax<<" costmin= "<<costmin<< G4endl;
183 
184   if(cosThetaMax < costmin) {
185     G4int iz = G4lrint(Z);
186     G4double cut = (0.0 < fixedCut) ? fixedCut : cutEnergy;
187     costmin = wokvi->SetupTarget(iz, cut);
188     //G4cout << "SetupTarget: Z= " << iz << "  cut= " << cut << "  "
189     //     << costmin << G4endl;
190     G4double costmax = (1 == iz && particle == theProton && cosThetaMax < 0.0)
191       ? 0.0 : cosThetaMax; 
192     if(costmin > costmax) {
193       cross = wokvi->ComputeNuclearCrossSection(costmin, costmax)
194         + wokvi->ComputeElectronCrossSection(costmin, costmax);
195     }
196     /*    
197     if(p->GetParticleName() == "e-") 
198     G4cout << "Z= " << Z << " e(MeV)= " << kinEnergy/MeV 
199      << " cross(b)= " << cross/barn << " 1-costmin= " << 1-costmin
200      << " 1-costmax= " << 1-costmax 
201      << " 1-cosThetaMax= " << 1-cosThetaMax
202      << "  " << currentMaterial->GetName()
203      << G4endl;
204     */
205   }
206   //G4cout << "====== cross= " << cross << G4endl;
207   return cross;  
208 }
209 
210 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
211 
212 void G4eCoulombScatteringModel::SampleSecondaries(
213                 std::vector<G4DynamicParticle*>* fvect,
214     const G4MaterialCutsCouple* couple,
215     const G4DynamicParticle* dp,
216     G4double cutEnergy,
217     G4double)
218 {
219   G4double kinEnergy = dp->GetKineticEnergy();
220   SetupParticle(dp->GetDefinition());
221   DefineMaterial(couple);
222   /*
223   G4cout << "G4eCoulombScatteringModel::SampleSecondaries e(MeV)= " 
224      << kinEnergy << "  " << particle->GetParticleName() 
225      << " cut= " << cutEnergy<< G4endl;
226   */
227   // Choose nucleus
228   G4double cut = (0.0 < fixedCut) ? fixedCut : cutEnergy;
229 
230   wokvi->SetupKinematic(kinEnergy, currentMaterial);
231 
232   const G4Element* currentElement = SelectTargetAtom(couple,particle,kinEnergy,
233                                        dp->GetLogKineticEnergy(),cut,kinEnergy);
234   G4int iz = currentElement->GetZasInt();
235 
236   G4double costmin = wokvi->SetupTarget(iz, cut);
237   G4double costmax = (1 == iz && particle == theProton && cosThetaMax < 0.0) 
238     ? 0.0 :  cosThetaMax; 
239   if(costmin <= costmax) { return; }
240 
241   G4double cross = wokvi->ComputeNuclearCrossSection(costmin, costmax);
242   G4double ecross = wokvi->ComputeElectronCrossSection(costmin, costmax);
243   G4double ratio = ecross/(cross + ecross);
244 
245   G4int ia = SelectIsotopeNumber(currentElement);
246   G4double targetMass = G4NucleiProperties::GetNuclearMass(ia, iz);
247   wokvi->SetTargetMass(targetMass);
248 
249   G4ThreeVector newDirection = 
250     wokvi->SampleSingleScattering(costmin, costmax, ratio);
251   G4double cost = newDirection.z();
252     /*
253       G4cout << "SampleSec: e(MeV)= " << kinEnergy/MeV   
254              << " 1-costmin= " << 1-costmin
255              << " 1-costmax= " << 1-costmax
256              << " 1-cost= " << 1-cost
257              << " ratio= " << ratio
258              << G4endl;
259     */
260   G4ThreeVector direction = dp->GetMomentumDirection(); 
261   newDirection.rotateUz(direction);   
262 
263   fParticleChange->ProposeMomentumDirection(newDirection);   
264 
265   // recoil sampling assuming a small recoil
266   // and first order correction to primary 4-momentum
267   G4double mom2 = wokvi->GetMomentumSquare();
268   G4double trec = mom2*(1.0 - cost)
269     /(targetMass + (mass + kinEnergy)*(1.0 - cost));
270 
271   // the check likely not needed
272   trec = std::min(trec, kinEnergy);
273   G4double finalT = kinEnergy - trec; 
274   G4double edep = 0.0;
275     /*
276     G4cout<<"G4eCoulombScatteringModel: finalT= "<<finalT<<" Trec= "
277     <<trec << " Z= " << iz << " A= " << ia
278     << " tcut(keV)= " << (*pCuts)[currentMaterialIndex]/keV << G4endl;
279     */
280   G4double tcut = recoilThreshold;
281   if(pCuts) { tcut= std::max(tcut,(*pCuts)[currentMaterialIndex]); }
282 
283   if(trec > tcut) {
284     G4ParticleDefinition* ion = theIonTable->GetIon(iz, ia, 0);
285     G4ThreeVector dir = (direction*sqrt(mom2) - 
286        newDirection*sqrt(finalT*(2*mass + finalT))).unit();
287     auto newdp = new G4DynamicParticle(ion, dir, trec);
288     fvect->push_back(newdp);
289   } else {
290     edep = trec;
291     fParticleChange->ProposeNonIonizingEnergyDeposit(edep);
292   }
293 
294     // finelize primary energy and energy balance
295     // this threshold may be applied only because for low-enegry
296     // e+e- msc model is applied
297   if(finalT < 0.0) { 
298     edep += finalT;  
299     finalT = 0.0;
300   } 
301   edep = std::max(edep, 0.0);
302   fParticleChange->SetProposedKineticEnergy(finalT);
303   fParticleChange->ProposeLocalEnergyDeposit(edep);
304 }
305 
306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
307