Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4XrayRayleighModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 // Author: Vladimir Grichine
 29 //
 30 // History:
 31 //
 32 // 14.10.12 V.Grichine, update of xsc and angular distribution
 33 // 25.05.2011   first implementation
 34 
 35 #include "G4XrayRayleighModel.hh"
 36 #include "G4PhysicalConstants.hh"
 37 #include "G4SystemOfUnits.hh"
 38 
 39 //////////////////////////////////////////////////////////////////////////////////
 40 
 41 const G4double G4XrayRayleighModel::fCofA = 2.*pi2*Bohr_radius*Bohr_radius;
 42 
 43 const G4double G4XrayRayleighModel::fCofR = 8.*pi*classic_electr_radius*classic_electr_radius/3.;
 44 
 45 //////////////////////////////////////////////////////////////////////////////////
 46 
 47 G4XrayRayleighModel::G4XrayRayleighModel(const G4ParticleDefinition*,
 48                const G4String& nam)
 49   :G4VEmModel(nam),isInitialised(false)
 50 {
 51   fParticleChange = nullptr;
 52   lowEnergyLimit  = 250*eV; 
 53   highEnergyLimit = 10.*MeV;
 54   fFormFactor     = 0.0;
 55   
 56   //  SetLowEnergyLimit(lowEnergyLimit);
 57   SetHighEnergyLimit(highEnergyLimit);
 58   //
 59   verboseLevel= 0;
 60   // Verbosity scale:
 61   // 0 = nothing 
 62   // 1 = warning for energy non-conservation 
 63   // 2 = details of energy budget
 64   // 3 = calculation of cross sections, file openings, sampling of atoms
 65   // 4 = entering in methods
 66 
 67   if(verboseLevel > 0) 
 68   {
 69     G4cout << "Xray Rayleigh is constructed " << G4endl
 70      << "Energy range: "
 71      << lowEnergyLimit / eV << " eV - "
 72      << highEnergyLimit / MeV << " MeV"
 73      << G4endl;
 74   }
 75 }
 76 
 77 //////////////////////////////////////////////////////////////////////////////////
 78 
 79 G4XrayRayleighModel::~G4XrayRayleighModel() = default;
 80 
 81 //////////////////////////////////////////////////////////////////////////////////
 82 
 83 void G4XrayRayleighModel::Initialise(const G4ParticleDefinition* particle,
 84             const G4DataVector& cuts)
 85 {
 86   if (verboseLevel > 3) 
 87   {
 88     G4cout << "Calling G4XrayRayleighModel::Initialise()" << G4endl;
 89   }
 90 
 91   InitialiseElementSelectors(particle,cuts);
 92 
 93 
 94   if(isInitialised) return; 
 95   fParticleChange = GetParticleChangeForGamma();
 96   isInitialised = true;
 97 
 98 }
 99 
100 //////////////////////////////////////////////////////////////////////////////////
101 
102 G4double G4XrayRayleighModel::ComputeCrossSectionPerAtom(
103                                        const G4ParticleDefinition*,
104                                              G4double gammaEnergy,
105                                              G4double Z, G4double,
106                                              G4double, G4double)
107 {
108   if (verboseLevel > 3) 
109   {
110     G4cout << "Calling CrossSectionPerAtom() of G4XrayRayleighModel" << G4endl;
111   }
112   if (gammaEnergy < lowEnergyLimit || gammaEnergy > highEnergyLimit) 
113   {
114     return 0.0;
115   }
116   G4double k   = gammaEnergy/hbarc;
117            k  *= Bohr_radius;
118   G4double p0  =  0.680654;  
119   G4double p1  = -0.0224188;
120   G4double lnZ = std::log(Z);    
121 
122   G4double lna = p0 + p1*lnZ; 
123 
124   G4double  alpha = std::exp(lna);
125 
126   G4double fo   = std::pow(k, alpha); 
127 
128   p0 = 3.68455;
129   p1 = -0.464806;
130   lna = p0 + p1*lnZ; 
131 
132   fo *= 0.01*std::exp(lna);
133 
134   fFormFactor = fo;
135 
136   G4double b    = 1. + 2.*fo;
137   G4double b2   = b*b;
138   G4double b3   = b*b2;
139 
140   G4double xsc  = fCofR*Z*Z/b3;
141            xsc *= fo*fo + (1. + fo)*(1. + fo);  
142 
143 
144   return   xsc;   
145 
146 }
147 
148 //////////////////////////////////////////////////////////////////////////////////
149 
150 void G4XrayRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* /*fvect*/,  
151                                             const G4MaterialCutsCouple* couple,
152                                             const G4DynamicParticle* aDPGamma,
153                                             G4double,
154                                             G4double)
155 {
156   if ( verboseLevel > 3)
157   {
158     G4cout << "Calling SampleSecondaries() of G4XrayRayleighModel" << G4endl;
159   }
160   G4double photonEnergy0 = aDPGamma->GetKineticEnergy();
161 
162   G4ParticleMomentum photonDirection0 = aDPGamma->GetMomentumDirection();
163 
164 
165   // Sample the angle of the scattered photon
166   // according to 1 + cosTheta*cosTheta distribution
167 
168   G4double cosDipole, cosTheta, sinTheta;
169   G4double c, delta, cofA, signc = 1., a, power = 1./3.;
170 
171   c = 4. - 8.*G4UniformRand();
172   a = c;
173  
174   if( c < 0. )
175   {
176     signc = -1.;
177     a     = -c;
178   }
179   delta  = std::sqrt(a*a+4.);
180   delta += a;
181   delta *= 0.5; 
182   cofA = -signc*std::pow(delta, power);
183   cosDipole = cofA - 1./cofA;
184 
185   // select atom
186   const G4Element* elm = SelectTargetAtom(couple, aDPGamma->GetParticleDefinition(),
187                                           photonEnergy0,aDPGamma->GetLogKineticEnergy());
188   G4double Z = elm->GetZ();
189 
190   G4double k   = photonEnergy0/hbarc;
191            k  *= Bohr_radius;
192   G4double p0  =  0.680654;  
193   G4double p1  = -0.0224188;
194   G4double lnZ = std::log(Z);    
195 
196   G4double lna = p0 + p1*lnZ; 
197 
198   G4double  alpha = std::exp(lna);
199 
200   G4double fo   = std::pow(k, alpha); 
201 
202   p0 = 3.68455;
203   p1 = -0.464806;
204   lna = p0 + p1*lnZ; 
205 
206   fo *= 0.01*pi*std::exp(lna);
207 
208   
209   G4double beta = fo/(1 + fo);
210 
211   cosTheta = (cosDipole + beta)/(1. + cosDipole*beta);
212 
213 
214   if( cosTheta >  1.) cosTheta =  1.;
215   if( cosTheta < -1.) cosTheta = -1.;
216 
217   sinTheta = std::sqrt( (1. - cosTheta)*(1. + cosTheta) );
218 
219   // Scattered photon angles. ( Z - axis along the parent photon)
220 
221   G4double phi = twopi * G4UniformRand() ;
222   G4double dirX = sinTheta*std::cos(phi);
223   G4double dirY = sinTheta*std::sin(phi);
224   G4double dirZ = cosTheta;
225 
226   // Update G4VParticleChange for the scattered photon
227 
228   G4ThreeVector photonDirection1(dirX, dirY, dirZ);
229   photonDirection1.rotateUz(photonDirection0);
230   fParticleChange->ProposeMomentumDirection(photonDirection1);
231 
232   fParticleChange->SetProposedKineticEnergy(photonEnergy0); 
233 }
234 
235 
236