Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4PEEffectFluoModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:     G4PEEffectFluoModel
 33 //
 34 // Author:        Vladimir Ivanchenko on base of G4PEEffectModel
 35 //
 36 // Creation date: 13.06.2010
 37 //
 38 // Modifications:
 39 //
 40 // Class Description:
 41 // Implementation of the photo-electric effect with deexcitation
 42 //
 43 // -------------------------------------------------------------------
 44 //
 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 
 48 #include "G4PEEffectFluoModel.hh"
 49 #include "G4PhysicalConstants.hh"
 50 #include "G4SystemOfUnits.hh"
 51 #include "G4Electron.hh"
 52 #include "G4Gamma.hh"
 53 #include "Randomize.hh"
 54 #include "G4Material.hh"
 55 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4VAtomDeexcitation.hh"
 58 #include "G4LossTableManager.hh"
 59 #include "G4SauterGavrilaAngularDistribution.hh"
 60 
 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 62 
 63 using namespace std;
 64 
 65 G4PEEffectFluoModel::G4PEEffectFluoModel(const G4String& nam)
 66   : G4VEmModel(nam)
 67 {
 68   theGamma    = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();
 70   fminimalEnergy = 1.0*CLHEP::eV;
 71   SetDeexcitationFlag(true);
 72 
 73   fSandiaCof.resize(4,0.0);
 74 
 75   // default generator
 76   SetAngularDistribution(new G4SauterGavrilaAngularDistribution());
 77 }
 78 
 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 80 
 81 G4PEEffectFluoModel::~G4PEEffectFluoModel() = default;
 82 
 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 84 
 85 void G4PEEffectFluoModel::Initialise(const G4ParticleDefinition*,
 86              const G4DataVector&)
 87 {
 88   fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
 89   fPEBelowKShell = G4EmParameters::Instance()->PhotoeffectBelowKShell();
 90   if(nullptr == fParticleChange) { 
 91     fParticleChange = GetParticleChangeForGamma(); 
 92   }
 93   std::size_t nmat = G4Material::GetNumberOfMaterials();
 94   fMatEnergyTh.resize(nmat, 0.0);
 95   for(std::size_t i=0; i<nmat; ++i) { 
 96     fMatEnergyTh[i] = (*(G4Material::GetMaterialTable()))[i]
 97       ->GetSandiaTable()->GetSandiaCofForMaterial(0, 0);
 98     //G4cout << "G4PEEffectFluoModel::Initialise Eth(eV)= " 
 99     //     << fMatEnergyTh[i]/eV << G4endl; 
100   }
101 }
102 
103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
104 
105 G4double 
106 G4PEEffectFluoModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
107             G4double energy,
108             G4double Z, G4double,
109             G4double, G4double)
110 {
111   // This method may be used only if G4MaterialCutsCouple pointer
112   //   has been set properly
113   CurrentCouple()->GetMaterial()
114     ->GetSandiaTable()->GetSandiaCofPerAtom((G4int)Z, energy, fSandiaCof);
115 
116   G4double x1 = 1 / energy;
117 
118   return x1 * (fSandiaCof[0] + x1 * (fSandiaCof[1] +
119     x1 * (fSandiaCof[2] + x1 * fSandiaCof[3])));
120 }
121 
122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
123 
124 G4double 
125 G4PEEffectFluoModel::CrossSectionPerVolume(const G4Material* material,
126              const G4ParticleDefinition*,
127              G4double energy,
128              G4double, G4double)
129 {
130   // This method may be used only if G4MaterialCutsCouple pointer
131   //   has been set properly
132   energy = std::max(energy, fMatEnergyTh[material->GetIndex()]);
133   const G4double* SandiaCof = 
134     material->GetSandiaTable()->GetSandiaCofForMaterial(energy);
135 
136   G4double x1 = 1 / energy;
137 
138   return x1 * (SandiaCof[0] + x1 * (SandiaCof[1] +
139     x1 * (SandiaCof[2] + x1 * SandiaCof[3])));
140 }
141 
142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143 
144 void 
145 G4PEEffectFluoModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
146                const G4MaterialCutsCouple* couple,
147                const G4DynamicParticle* aDynamicPhoton,
148                G4double,
149                G4double)
150 {
151   SetCurrentCouple(couple);
152   const G4Material* aMaterial = couple->GetMaterial();
153 
154   G4double energy = aDynamicPhoton->GetKineticEnergy();
155 
156   // select randomly one element constituing the material.
157   const G4Element* anElement = SelectRandomAtom(aMaterial,theGamma,energy);
158   
159   //
160   // Photo electron
161   //
162 
163   // Select atomic shell
164   G4int nShells = anElement->GetNbOfAtomicShells();
165   G4int i = 0;  
166   for(; i<nShells; ++i) {
167     /*
168     G4cout << "i= " << i << " E(eV)= " << energy/eV 
169          << " Eb(eV)= " << anElement->GetAtomicShell(i)/eV
170            << "  " << anElement->GetName() 
171      << G4endl;
172     */
173     if(energy >= anElement->GetAtomicShell(i)) { break; }
174   }
175 
176   G4double edep = energy;
177 
178   // photo-electron is not sampled if shell is not found or 
179   // the flag of photoeffect is "false" and shell is no K 
180   if ( (fPEBelowKShell || 0 == i) && i < nShells ) {
181 
182     G4double bindingEnergy = anElement->GetAtomicShell(i);
183     edep = bindingEnergy;
184     G4double esec = 0.0;
185 
186     // sample deexcitation cascade
187     //
188     if(nullptr != fAtomDeexcitation) {
189       G4int index = couple->GetIndex();
190       if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
191   G4int Z = G4lrint(anElement->GetZ());
192   auto as = (G4AtomicShellEnumerator)(i);
193   const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
194         G4double eshell = shell->BindingEnergy();
195         if(eshell > bindingEnergy && eshell <= energy) {
196           bindingEnergy = eshell;
197           edep = eshell;
198   }
199   std::size_t nbefore = fvect->size();
200   fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
201   std::size_t nafter = fvect->size();
202   for (std::size_t j=nbefore; j<nafter; ++j) {
203     G4double e = ((*fvect)[j])->GetKineticEnergy();
204     if(esec + e > edep) {
205       // correct energy in order to have energy balance
206       e = edep - esec;
207       ((*fvect)[j])->SetKineticEnergy(e);
208       esec += e;
209       /*
210         G4cout << "### G4PEffectFluoModel Edep(eV)= " << edep/eV 
211          << " Esec(eV)= " << esec/eV 
212          << " E["<< j << "](eV)= " << e/eV
213          << " N= " << nafter
214          << " Z= " << Z << " shell= " << i 
215          << "  Ebind(keV)= " << bindingEnergy/keV 
216          << "  Eshell(keV)= " << shell->BindingEnergy()/keV 
217          << G4endl;
218       */
219       // delete the rest of secondaries (should not happens)
220       for (std::size_t jj=nafter-1; jj>j; --jj) { 
221         delete (*fvect)[jj]; 
222         fvect->pop_back(); 
223       }
224       break;        
225     }
226     esec += e; 
227   }
228         edep -= esec;
229       }
230     }
231     // create photo electron
232     //
233     G4double elecKineEnergy = energy - bindingEnergy;
234     if (elecKineEnergy > fminimalEnergy) {
235       auto aParticle = new G4DynamicParticle(theElectron,
236   GetAngularDistribution()->SampleDirection(aDynamicPhoton, 
237               elecKineEnergy,
238               i, couple->GetMaterial()), 
239                  elecKineEnergy);
240       fvect->push_back(aParticle);
241     } else {
242       edep += elecKineEnergy;
243       elecKineEnergy = 0.0;
244     }
245     if(std::abs(energy - elecKineEnergy - esec - edep) > CLHEP::eV) {
246       G4cout << "### G4PEffectFluoModel dE(eV)= " 
247        << (energy - elecKineEnergy - esec - edep)/eV 
248        << " shell= " << i 
249        << "  E(keV)= " << energy/keV 
250        << "  Ebind(keV)= " << bindingEnergy/keV 
251        << "  Ee(keV)= " << elecKineEnergy/keV 
252        << "  Esec(keV)= " << esec/keV 
253        << "  Edep(keV)= " << edep/keV 
254        << G4endl;
255     }
256   }
257 
258   // kill primary photon
259   fParticleChange->SetProposedKineticEnergy(0.);
260   fParticleChange->ProposeTrackStatus(fStopAndKill);
261   if(edep > 0.0) {
262     fParticleChange->ProposeLocalEnergyDeposit(edep);
263   }
264 }
265 
266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
267