Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4PEEffectFluoModel 33 // 34 // Author: Vladimir Ivanchenko on base of G4PEEffectModel 35 // 36 // Creation date: 13.06.2010 37 // 38 // Modifications: 39 // 40 // Class Description: 41 // Implementation of the photo-electric effect with deexcitation 42 // 43 // ------------------------------------------------------------------- 44 // 45 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 47 48 #include "G4PEEffectFluoModel.hh" 49 #include "G4PhysicalConstants.hh" 50 #include "G4SystemOfUnits.hh" 51 #include "G4Electron.hh" 52 #include "G4Gamma.hh" 53 #include "Randomize.hh" 54 #include "G4Material.hh" 55 #include "G4DataVector.hh" 56 #include "G4ParticleChangeForGamma.hh" 57 #include "G4VAtomDeexcitation.hh" 58 #include "G4LossTableManager.hh" 59 #include "G4SauterGavrilaAngularDistribution.hh" 60 61 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 62 63 using namespace std; 64 65 G4PEEffectFluoModel::G4PEEffectFluoModel(const G4String& nam) 66 : G4VEmModel(nam) 67 { 68 theGamma = G4Gamma::Gamma(); 69 theElectron = G4Electron::Electron(); 70 fminimalEnergy = 1.0*CLHEP::eV; 71 SetDeexcitationFlag(true); 72 73 fSandiaCof.resize(4,0.0); 74 75 // default generator 76 SetAngularDistribution(new G4SauterGavrilaAngularDistribution()); 77 } 78 79 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 80 81 G4PEEffectFluoModel::~G4PEEffectFluoModel() = default; 82 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 84 85 void G4PEEffectFluoModel::Initialise(const G4ParticleDefinition*, 86 const G4DataVector&) 87 { 88 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation(); 89 fPEBelowKShell = G4EmParameters::Instance()->PhotoeffectBelowKShell(); 90 if(nullptr == fParticleChange) { 91 fParticleChange = GetParticleChangeForGamma(); 92 } 93 std::size_t nmat = G4Material::GetNumberOfMaterials(); 94 fMatEnergyTh.resize(nmat, 0.0); 95 for(std::size_t i=0; i<nmat; ++i) { 96 fMatEnergyTh[i] = (*(G4Material::GetMaterialTable()))[i] 97 ->GetSandiaTable()->GetSandiaCofForMaterial(0, 0); 98 //G4cout << "G4PEEffectFluoModel::Initialise Eth(eV)= " 99 // << fMatEnergyTh[i]/eV << G4endl; 100 } 101 } 102 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo..... 104 105 G4double 106 G4PEEffectFluoModel::ComputeCrossSectionPerAtom(const G4ParticleDefinition*, 107 G4double energy, 108 G4double Z, G4double, 109 G4double, G4double) 110 { 111 // This method may be used only if G4MaterialCutsCouple pointer 112 // has been set properly 113 CurrentCouple()->GetMaterial() 114 ->GetSandiaTable()->GetSandiaCofPerAtom((G4int)Z, energy, fSandiaCof); 115 116 G4double x1 = 1 / energy; 117 118 return x1 * (fSandiaCof[0] + x1 * (fSandiaCof[1] + 119 x1 * (fSandiaCof[2] + x1 * fSandiaCof[3]))); 120 } 121 122 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 123 124 G4double 125 G4PEEffectFluoModel::CrossSectionPerVolume(const G4Material* material, 126 const G4ParticleDefinition*, 127 G4double energy, 128 G4double, G4double) 129 { 130 // This method may be used only if G4MaterialCutsCouple pointer 131 // has been set properly 132 energy = std::max(energy, fMatEnergyTh[material->GetIndex()]); 133 const G4double* SandiaCof = 134 material->GetSandiaTable()->GetSandiaCofForMaterial(energy); 135 136 G4double x1 = 1 / energy; 137 138 return x1 * (SandiaCof[0] + x1 * (SandiaCof[1] + 139 x1 * (SandiaCof[2] + x1 * SandiaCof[3]))); 140 } 141 142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 143 144 void 145 G4PEEffectFluoModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 146 const G4MaterialCutsCouple* couple, 147 const G4DynamicParticle* aDynamicPhoton, 148 G4double, 149 G4double) 150 { 151 SetCurrentCouple(couple); 152 const G4Material* aMaterial = couple->GetMaterial(); 153 154 G4double energy = aDynamicPhoton->GetKineticEnergy(); 155 156 // select randomly one element constituing the material. 157 const G4Element* anElement = SelectRandomAtom(aMaterial,theGamma,energy); 158 159 // 160 // Photo electron 161 // 162 163 // Select atomic shell 164 G4int nShells = anElement->GetNbOfAtomicShells(); 165 G4int i = 0; 166 for(; i<nShells; ++i) { 167 /* 168 G4cout << "i= " << i << " E(eV)= " << energy/eV 169 << " Eb(eV)= " << anElement->GetAtomicShell(i)/eV 170 << " " << anElement->GetName() 171 << G4endl; 172 */ 173 if(energy >= anElement->GetAtomicShell(i)) { break; } 174 } 175 176 G4double edep = energy; 177 178 // photo-electron is not sampled if shell is not found or 179 // the flag of photoeffect is "false" and shell is no K 180 if ( (fPEBelowKShell || 0 == i) && i < nShells ) { 181 182 G4double bindingEnergy = anElement->GetAtomicShell(i); 183 edep = bindingEnergy; 184 G4double esec = 0.0; 185 186 // sample deexcitation cascade 187 // 188 if(nullptr != fAtomDeexcitation) { 189 G4int index = couple->GetIndex(); 190 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) { 191 G4int Z = G4lrint(anElement->GetZ()); 192 auto as = (G4AtomicShellEnumerator)(i); 193 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as); 194 G4double eshell = shell->BindingEnergy(); 195 if(eshell > bindingEnergy && eshell <= energy) { 196 bindingEnergy = eshell; 197 edep = eshell; 198 } 199 std::size_t nbefore = fvect->size(); 200 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index); 201 std::size_t nafter = fvect->size(); 202 for (std::size_t j=nbefore; j<nafter; ++j) { 203 G4double e = ((*fvect)[j])->GetKineticEnergy(); 204 if(esec + e > edep) { 205 // correct energy in order to have energy balance 206 e = edep - esec; 207 ((*fvect)[j])->SetKineticEnergy(e); 208 esec += e; 209 /* 210 G4cout << "### G4PEffectFluoModel Edep(eV)= " << edep/eV 211 << " Esec(eV)= " << esec/eV 212 << " E["<< j << "](eV)= " << e/eV 213 << " N= " << nafter 214 << " Z= " << Z << " shell= " << i 215 << " Ebind(keV)= " << bindingEnergy/keV 216 << " Eshell(keV)= " << shell->BindingEnergy()/keV 217 << G4endl; 218 */ 219 // delete the rest of secondaries (should not happens) 220 for (std::size_t jj=nafter-1; jj>j; --jj) { 221 delete (*fvect)[jj]; 222 fvect->pop_back(); 223 } 224 break; 225 } 226 esec += e; 227 } 228 edep -= esec; 229 } 230 } 231 // create photo electron 232 // 233 G4double elecKineEnergy = energy - bindingEnergy; 234 if (elecKineEnergy > fminimalEnergy) { 235 auto aParticle = new G4DynamicParticle(theElectron, 236 GetAngularDistribution()->SampleDirection(aDynamicPhoton, 237 elecKineEnergy, 238 i, couple->GetMaterial()), 239 elecKineEnergy); 240 fvect->push_back(aParticle); 241 } else { 242 edep += elecKineEnergy; 243 elecKineEnergy = 0.0; 244 } 245 if(std::abs(energy - elecKineEnergy - esec - edep) > CLHEP::eV) { 246 G4cout << "### G4PEffectFluoModel dE(eV)= " 247 << (energy - elecKineEnergy - esec - edep)/eV 248 << " shell= " << i 249 << " E(keV)= " << energy/keV 250 << " Ebind(keV)= " << bindingEnergy/keV 251 << " Ee(keV)= " << elecKineEnergy/keV 252 << " Esec(keV)= " << esec/keV 253 << " Edep(keV)= " << edep/keV 254 << G4endl; 255 } 256 } 257 258 // kill primary photon 259 fParticleChange->SetProposedKineticEnergy(0.); 260 fParticleChange->ProposeTrackStatus(fStopAndKill); 261 if(edep > 0.0) { 262 fParticleChange->ProposeLocalEnergyDeposit(edep); 263 } 264 } 265 266 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 267