Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4MollerBhabhaModel 33 // 34 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 35 // 36 // Creation date: 03.01.2002 37 // 38 // Modifications: 39 // 40 // 13-11-02 Minor fix - use normalised direction (V.Ivanchenko) 41 // 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko) 42 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 43 // 27-01-03 Make models region aware (V.Ivanchenko) 44 // 13-02-03 Add name (V.Ivanchenko) 45 // 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko) 46 // 25-07-05 Add protection in calculation of recoil direction for the case 47 // of complete energy transfer from e+ to e- (V.Ivanchenko) 48 // 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 49 // 15-05-06 Fix MinEnergyCut (V.Ivanchenko) 50 // 51 // 52 // Class Description: 53 // 54 // Implementation of energy loss and delta-electron production by e+/e- 55 // 56 // ------------------------------------------------------------------- 57 // 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 59 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 60 61 #include "G4MollerBhabhaModel.hh" 62 #include "G4PhysicalConstants.hh" 63 #include "G4SystemOfUnits.hh" 64 #include "G4Electron.hh" 65 #include "G4Positron.hh" 66 #include "Randomize.hh" 67 #include "G4ParticleChangeForLoss.hh" 68 #include "G4Log.hh" 69 #include "G4DeltaAngle.hh" 70 71 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 72 73 using namespace std; 74 75 G4MollerBhabhaModel::G4MollerBhabhaModel(const G4ParticleDefinition* p, 76 const G4String& nam) 77 : G4VEmModel(nam), 78 particle(nullptr), 79 isElectron(true), 80 twoln10(2.0*G4Log(10.0)), 81 lowLimit(0.02*keV), 82 isInitialised(false) 83 { 84 theElectron = G4Electron::Electron(); 85 if(nullptr != p) { SetParticle(p); } 86 fParticleChange = nullptr; 87 } 88 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 90 91 G4MollerBhabhaModel::~G4MollerBhabhaModel() = default; 92 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 94 95 G4double G4MollerBhabhaModel::MaxSecondaryEnergy(const G4ParticleDefinition*, 96 G4double kinEnergy) 97 { 98 G4double tmax = kinEnergy; 99 if(isElectron) { tmax *= 0.5; } 100 return tmax; 101 } 102 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 104 105 void G4MollerBhabhaModel::Initialise(const G4ParticleDefinition* p, 106 const G4DataVector&) 107 { 108 if(p != particle) { SetParticle(p); } 109 110 if(isInitialised) { return; } 111 112 isInitialised = true; 113 fParticleChange = GetParticleChangeForLoss(); 114 if(UseAngularGeneratorFlag() && !GetAngularDistribution()) { 115 SetAngularDistribution(new G4DeltaAngle()); 116 } 117 } 118 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 120 121 G4double G4MollerBhabhaModel::ComputeCrossSectionPerElectron( 122 const G4ParticleDefinition* p, G4double kineticEnergy, 123 G4double cutEnergy, G4double maxEnergy) 124 { 125 if(p != particle) { SetParticle(p); } 126 127 G4double cross = 0.0; 128 G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 129 tmax = std::min(maxEnergy, tmax); 130 //G4cout << "E= " << kineticEnergy << " cut= " << cutEnergy 131 // << " Emax= " << tmax << G4endl; 132 if(cutEnergy < tmax) { 133 134 G4double xmin = cutEnergy/kineticEnergy; 135 G4double xmax = tmax/kineticEnergy; 136 G4double tau = kineticEnergy/electron_mass_c2; 137 G4double gam = tau + 1.0; 138 G4double gamma2= gam*gam; 139 G4double beta2 = tau*(tau + 2)/gamma2; 140 141 //Moller (e-e-) scattering 142 if (isElectron) { 143 144 G4double gg = (2.0*gam - 1.0)/gamma2; 145 cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax) 146 + 1.0/((1.0-xmin)*(1.0 - xmax))) 147 - gg*G4Log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2; 148 149 //Bhabha (e+e-) scattering 150 } else { 151 152 G4double y = 1.0/(1.0 + gam); 153 G4double y2 = y*y; 154 G4double y12 = 1.0 - 2.0*y; 155 G4double b1 = 2.0 - y2; 156 G4double b2 = y12*(3.0 + y2); 157 G4double y122= y12*y12; 158 G4double b4 = y122*y12; 159 G4double b3 = b4 + y122; 160 161 cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2 162 - 0.5*b3*(xmin + xmax) 163 + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0) 164 - b1*G4Log(xmax/xmin); 165 } 166 167 cross *= twopi_mc2_rcl2/kineticEnergy; 168 } 169 return cross; 170 } 171 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 173 174 G4double G4MollerBhabhaModel::ComputeCrossSectionPerAtom( 175 const G4ParticleDefinition* p, 176 G4double kineticEnergy, 177 G4double Z, G4double, 178 G4double cutEnergy, 179 G4double maxEnergy) 180 { 181 return Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy); 182 } 183 184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 185 186 G4double G4MollerBhabhaModel::CrossSectionPerVolume( 187 const G4Material* material, 188 const G4ParticleDefinition* p, 189 G4double kinEnergy, 190 G4double cutEnergy, 191 G4double maxEnergy) 192 { 193 G4double eDensity = material->GetElectronDensity(); 194 return eDensity*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); 195 } 196 197 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 198 199 G4double G4MollerBhabhaModel::ComputeDEDXPerVolume( 200 const G4Material* material, 201 const G4ParticleDefinition* p, 202 G4double kineticEnergy, 203 G4double cut) 204 { 205 if(p != particle) { SetParticle(p); } 206 // calculate the dE/dx due to the ionization by Seltzer-Berger formula 207 // checl low-energy limit 208 G4double electronDensity = material->GetElectronDensity(); 209 210 G4double Zeff = material->GetIonisation()->GetZeffective(); 211 G4double th = 0.25*sqrt(Zeff)*keV; 212 G4double tkin = std::max(kineticEnergy, th); 213 214 G4double tau = tkin/electron_mass_c2; 215 G4double gam = tau + 1.0; 216 G4double gamma2= gam*gam; 217 G4double bg2 = tau*(tau + 2); 218 G4double beta2 = bg2/gamma2; 219 220 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 221 eexc /= electron_mass_c2; 222 G4double eexc2 = eexc*eexc; 223 224 G4double d = std::min(cut, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; 225 G4double dedx; 226 227 // electron 228 if (isElectron) { 229 230 dedx = G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 231 + G4Log((tau-d)*d) + tau/(tau-d) 232 + (0.5*d*d + (2.0*tau + 1.)*G4Log(1. - d/tau))/gamma2; 233 234 //positron 235 } else { 236 237 G4double d2 = d*d*0.5; 238 G4double d3 = d2*d/1.5; 239 G4double d4 = d3*d*0.75; 240 G4double y = 1.0/(1.0 + gam); 241 dedx = G4Log(2.0*(tau + 2.0)/eexc2) + G4Log(tau*d) 242 - beta2*(tau + 2.0*d - y*(3.0*d2 243 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; 244 } 245 246 //density correction 247 G4double x = G4Log(bg2)/twoln10; 248 dedx -= material->GetIonisation()->DensityCorrection(x); 249 250 // now you can compute the total ionization loss 251 dedx *= twopi_mc2_rcl2*electronDensity/beta2; 252 if (dedx < 0.0) { dedx = 0.0; } 253 254 // lowenergy extrapolation 255 256 if (kineticEnergy < th) { 257 x = kineticEnergy/th; 258 if(x > 0.25) { dedx /= sqrt(x); } 259 else { dedx *= 1.4*sqrt(x)/(0.1 + x); } 260 } 261 return dedx; 262 } 263 264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 265 266 void 267 G4MollerBhabhaModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 268 const G4MaterialCutsCouple* couple, 269 const G4DynamicParticle* dp, 270 G4double cutEnergy, 271 G4double maxEnergy) 272 { 273 G4double kineticEnergy = dp->GetKineticEnergy(); 274 //G4cout << "G4MollerBhabhaModel::SampleSecondaries: E= " << kineticEnergy 275 // << " in " << couple->GetMaterial()->GetName() << G4endl; 276 G4double tmax; 277 G4double tmin = cutEnergy; 278 if(isElectron) { 279 tmax = 0.5*kineticEnergy; 280 } else { 281 tmax = kineticEnergy; 282 } 283 if(maxEnergy < tmax) { tmax = maxEnergy; } 284 if(tmin >= tmax) { return; } 285 286 G4double energy = kineticEnergy + electron_mass_c2; 287 G4double xmin = tmin/kineticEnergy; 288 G4double xmax = tmax/kineticEnergy; 289 G4double gam = energy/electron_mass_c2; 290 G4double gamma2 = gam*gam; 291 G4double beta2 = 1.0 - 1.0/gamma2; 292 G4double x, z, grej; 293 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine(); 294 G4double rndm[2]; 295 296 //Moller (e-e-) scattering 297 if (isElectron) { 298 299 G4double gg = (2.0*gam - 1.0)/gamma2; 300 G4double y = 1.0 - xmax; 301 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y)); 302 303 do { 304 rndmEngine->flatArray(2, rndm); 305 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]); 306 y = 1.0 - x; 307 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y)); 308 /* 309 if(z > grej) { 310 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 311 << "Majorant " << grej << " < " 312 << z << " for x= " << x 313 << " e-e- scattering" 314 << G4endl; 315 } 316 */ 317 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 318 } while(grej * rndm[1] > z); 319 320 //Bhabha (e+e-) scattering 321 } else { 322 323 G4double y = 1.0/(1.0 + gam); 324 G4double y2 = y*y; 325 G4double y12 = 1.0 - 2.0*y; 326 G4double b1 = 2.0 - y2; 327 G4double b2 = y12*(3.0 + y2); 328 G4double y122= y12*y12; 329 G4double b4 = y122*y12; 330 G4double b3 = b4 + y122; 331 332 y = xmax*xmax; 333 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*b1)*beta2; 334 do { 335 rndmEngine->flatArray(2, rndm); 336 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]); 337 y = x*x; 338 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1)*beta2; 339 /* 340 if(z > grej) { 341 G4cout << "G4MollerBhabhaModel::SampleSecondary Warning! " 342 << "Majorant " << grej << " < " 343 << z << " for x= " << x 344 << " e+e- scattering" 345 << G4endl; 346 } 347 */ 348 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 349 } while(grej * rndm[1] > z); 350 } 351 352 G4double deltaKinEnergy = x * kineticEnergy; 353 354 G4ThreeVector deltaDirection; 355 356 if(UseAngularGeneratorFlag()) { 357 const G4Material* mat = couple->GetMaterial(); 358 G4int Z = SelectRandomAtomNumber(mat); 359 360 deltaDirection = 361 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat); 362 363 } else { 364 365 G4double deltaMomentum = 366 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 367 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / 368 (deltaMomentum * dp->GetTotalMomentum()); 369 if(cost > 1.0) { cost = 1.0; } 370 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); 371 372 G4double phi = twopi * rndmEngine->flat() ; 373 374 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ; 375 deltaDirection.rotateUz(dp->GetMomentumDirection()); 376 } 377 378 // create G4DynamicParticle object for delta ray 379 auto delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); 380 vdp->push_back(delta); 381 382 // primary change 383 kineticEnergy -= deltaKinEnergy; 384 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); 385 finalP = finalP.unit(); 386 387 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 388 fParticleChange->SetProposedMomentumDirection(finalP); 389 } 390 391 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 392