Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4KleinNishinaCompton.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:     G4KleinNishinaCompton
 33 //
 34 // Author:        Vladimir Ivanchenko on base of Michel Maire code
 35 //
 36 // Creation date: 15.03.2005
 37 //
 38 // Modifications:
 39 // 18-04-05 Use G4ParticleChangeForGamma (V.Ivantchenko)
 40 // 27-03-06 Remove upper limit of cross section (V.Ivantchenko)
 41 //
 42 // Class Description:
 43 //
 44 // -------------------------------------------------------------------
 45 //
 46 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 47 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 48 
 49 #include "G4KleinNishinaCompton.hh"
 50 #include "G4PhysicalConstants.hh"
 51 #include "G4SystemOfUnits.hh"
 52 #include "G4Electron.hh"
 53 #include "G4Gamma.hh"
 54 #include "Randomize.hh"
 55 #include "G4DataVector.hh"
 56 #include "G4ParticleChangeForGamma.hh"
 57 #include "G4Log.hh"
 58 #include "G4Exp.hh"
 59 
 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 61 
 62 using namespace std;
 63 
 64 G4KleinNishinaCompton::G4KleinNishinaCompton(const G4ParticleDefinition*,
 65                                              const G4String& nam)
 66   : G4VEmModel(nam)
 67 {
 68   theGamma = G4Gamma::Gamma();
 69   theElectron = G4Electron::Electron();
 70   lowestSecondaryEnergy = 100.0*eV;
 71   fParticleChange = nullptr;
 72 }
 73 
 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 75 
 76 G4KleinNishinaCompton::~G4KleinNishinaCompton() = default;
 77 
 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 79 
 80 void G4KleinNishinaCompton::Initialise(const G4ParticleDefinition* p,
 81                                        const G4DataVector& cuts)
 82 {
 83   if(IsMaster()) { InitialiseElementSelectors(p, cuts); }
 84   if(nullptr == fParticleChange) { 
 85     fParticleChange = GetParticleChangeForGamma(); 
 86   }
 87 }
 88 
 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 90 
 91 void G4KleinNishinaCompton::InitialiseLocal(const G4ParticleDefinition*,
 92                                             G4VEmModel* masterModel)
 93 {
 94   SetElementSelectors(masterModel->GetElementSelectors());
 95 }
 96 
 97 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 98 
 99 G4double G4KleinNishinaCompton::ComputeCrossSectionPerAtom(
100                                        const G4ParticleDefinition*,
101                                              G4double GammaEnergy,
102                                              G4double Z, G4double,
103                                              G4double, G4double)
104 {
105   G4double xSection = 0.0 ;
106   if (GammaEnergy <= LowEnergyLimit()) { return xSection; }
107 
108   static const G4double a = 20.0 , b = 230.0 , c = 440.0;
109 
110   static const G4double
111   d1= 2.7965e-1*CLHEP::barn, d2=-1.8300e-1*CLHEP::barn, 
112   d3= 6.7527   *CLHEP::barn, d4=-1.9798e+1*CLHEP::barn,
113   e1= 1.9756e-5*CLHEP::barn, e2=-1.0205e-2*CLHEP::barn, 
114   e3=-7.3913e-2*CLHEP::barn, e4= 2.7079e-2*CLHEP::barn,
115   f1=-3.9178e-7*CLHEP::barn, f2= 6.8241e-5*CLHEP::barn, 
116   f3= 6.0480e-5*CLHEP::barn, f4= 3.0274e-4*CLHEP::barn;
117        
118   G4double p1Z = Z*(d1 + e1*Z + f1*Z*Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
119            p3Z = Z*(d3 + e3*Z + f3*Z*Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
120 
121   G4double T0  = 15.0*keV; 
122   if (Z < 1.5) { T0 = 40.0*keV; }
123 
124   G4double X   = max(GammaEnergy, T0) / electron_mass_c2;
125   xSection = p1Z*G4Log(1.+2.*X)/X
126                + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
127                 
128   //  modification for low energy. (special case for Hydrogen)
129   if (GammaEnergy < T0) {
130     static const G4double dT0 = keV;
131     X = (T0+dT0) / electron_mass_c2 ;
132     G4double sigma = p1Z*G4Log(1.+2*X)/X
133                     + (p2Z + p3Z*X + p4Z*X*X)/(1. + a*X + b*X*X + c*X*X*X);
134     G4double   c1 = -T0*(sigma-xSection)/(xSection*dT0);             
135     G4double   c2 = 0.150; 
136     if (Z > 1.5) { c2 = 0.375-0.0556*G4Log(Z); }
137     G4double    y = G4Log(GammaEnergy/T0);
138     xSection *= G4Exp(-y*(c1+c2*y));          
139   }
140   // G4cout<<"e= "<< GammaEnergy<<" Z= "<<Z<<" cross= " << xSection << G4endl;
141   return xSection;
142 }
143 
144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145 
146 void G4KleinNishinaCompton::SampleSecondaries(
147                             std::vector<G4DynamicParticle*>* fvect,
148                             const G4MaterialCutsCouple*,
149                             const G4DynamicParticle* aDynamicGamma,
150                             G4double,
151                             G4double)
152 {
153   // The scattered gamma energy is sampled according to Klein - Nishina formula.
154   // The random number techniques of Butcher & Messel are used 
155   // (Nuc Phys 20(1960),15).
156   // Note : Effects due to binding of atomic electrons are negliged.
157  
158   G4double gamEnergy0 = aDynamicGamma->GetKineticEnergy();
159 
160   // do nothing below the threshold
161   if(gamEnergy0 <= LowEnergyLimit()) { return; }
162 
163   G4double E0_m = gamEnergy0 / electron_mass_c2 ;
164 
165   G4ThreeVector gamDirection0 = aDynamicGamma->GetMomentumDirection();
166 
167   //
168   // sample the energy rate of the scattered gamma 
169   //
170 
171   G4double epsilon, epsilonsq, onecost, sint2, greject ;
172 
173   G4double eps0       = 1./(1. + 2.*E0_m);
174   G4double epsilon0sq = eps0*eps0;
175   G4double alpha1     = - G4Log(eps0);
176   G4double alpha2     = alpha1 + 0.5*(1.- epsilon0sq);
177 
178   CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine();
179   G4double rndm[3];
180 
181   static const G4int nlooplim = 1000;
182   G4int nloop = 0;
183   do {
184     ++nloop;
185     // false interaction if too many iterations
186     if(nloop > nlooplim) { return; }
187 
188     // 3 random numbers to sample scattering
189     rndmEngineMod->flatArray(3, rndm);
190 
191     if ( alpha1 > alpha2*rndm[0] ) {
192       epsilon   = G4Exp(-alpha1*rndm[1]);   // eps0**r
193       epsilonsq = epsilon*epsilon; 
194 
195     } else {
196       epsilonsq = epsilon0sq + (1.- epsilon0sq)*rndm[1];
197       epsilon   = sqrt(epsilonsq);
198     };
199 
200     onecost = (1.- epsilon)/(epsilon*E0_m);
201     sint2   = onecost*(2.-onecost);
202     greject = 1. - epsilon*sint2/(1.+ epsilonsq);
203 
204     // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
205   } while (greject < rndm[2]);
206  
207   //
208   // scattered gamma angles. ( Z - axis along the parent gamma)
209   //
210 
211   if(sint2 < 0.0) { sint2 = 0.0; }
212   G4double cosTeta = 1. - onecost; 
213   G4double sinTeta = sqrt (sint2);
214   G4double Phi     = twopi * rndmEngineMod->flat();
215 
216   //
217   // update G4VParticleChange for the scattered gamma
218   //
219    
220   G4ThreeVector gamDirection1(sinTeta*cos(Phi), sinTeta*sin(Phi), cosTeta);
221   gamDirection1.rotateUz(gamDirection0);
222   G4double gamEnergy1 = epsilon*gamEnergy0;
223   G4double edep = 0.0;
224   if(gamEnergy1 > lowestSecondaryEnergy) {
225     fParticleChange->ProposeMomentumDirection(gamDirection1);
226     fParticleChange->SetProposedKineticEnergy(gamEnergy1);
227   } else { 
228     fParticleChange->ProposeTrackStatus(fStopAndKill);
229     fParticleChange->SetProposedKineticEnergy(0.0);
230     edep = gamEnergy1;
231   }
232 
233   //
234   // kinematic of the scattered electron
235   //
236 
237   G4double eKinEnergy = gamEnergy0 - gamEnergy1;
238 
239   if(eKinEnergy > lowestSecondaryEnergy) {
240     G4ThreeVector eDirection = gamEnergy0*gamDirection0 - gamEnergy1*gamDirection1;
241     eDirection = eDirection.unit();
242 
243     // create G4DynamicParticle object for the electron.
244     auto dp = new G4DynamicParticle(theElectron,eDirection,eKinEnergy);
245     fvect->push_back(dp);
246   } else {
247     edep += eKinEnergy;  
248   }
249   // energy balance
250   if(edep > 0.0) { 
251     fParticleChange->ProposeLocalEnergyDeposit(edep);
252   }
253 }
254 
255 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256 
257 
258