Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class file 30 // 31 // 32 // File name: G4ICRU73QOModel 33 // 34 // Author: Alexander Bagulya 35 // 36 // Creation date: 21.05.2010 37 // 38 // Modifications: 39 // 40 // 41 // ------------------------------------------------------------------- 42 // 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 45 46 #include "G4ICRU73QOModel.hh" 47 #include "G4PhysicalConstants.hh" 48 #include "G4SystemOfUnits.hh" 49 #include "Randomize.hh" 50 #include "G4Electron.hh" 51 #include "G4ParticleChangeForLoss.hh" 52 #include "G4LossTableManager.hh" 53 #include "G4AntiProton.hh" 54 #include "G4DeltaAngle.hh" 55 #include "G4Log.hh" 56 #include "G4Exp.hh" 57 58 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 59 60 using namespace std; 61 62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 63 64 G4ICRU73QOModel::G4ICRU73QOModel(const G4ParticleDefinition* p, const G4String& nam) 65 : G4VEmModel(nam), 66 particle(nullptr), 67 isInitialised(false) 68 { 69 mass = charge = chargeSquare = massRate = ratio = 0.0; 70 if(p) { SetParticle(p); } 71 SetHighEnergyLimit(10.0*MeV); 72 73 lowestKinEnergy = 5.0*keV; 74 75 sizeL0 = 67; 76 sizeL1 = 22; 77 sizeL2 = 14; 78 79 theElectron = G4Electron::Electron(); 80 81 for (G4int i = 0; i < 100; ++i) 82 { 83 indexZ[i] = -1; 84 } 85 for(G4int i = 0; i < NQOELEM; ++i) 86 { 87 if(ZElementAvailable[i] > 0) { 88 indexZ[ZElementAvailable[i]] = i; 89 } 90 } 91 fParticleChange = nullptr; 92 denEffData = nullptr; 93 } 94 95 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 96 97 void G4ICRU73QOModel::Initialise(const G4ParticleDefinition* p, 98 const G4DataVector&) 99 { 100 if(p != particle) SetParticle(p); 101 102 // always false before the run 103 SetDeexcitationFlag(false); 104 105 if(!isInitialised) { 106 isInitialised = true; 107 108 if(UseAngularGeneratorFlag() && !GetAngularDistribution()) { 109 SetAngularDistribution(new G4DeltaAngle()); 110 } 111 112 G4String pname = particle->GetParticleName(); 113 fParticleChange = GetParticleChangeForLoss(); 114 const G4MaterialTable* mtab = G4Material::GetMaterialTable(); 115 denEffData = (*mtab)[0]->GetIonisation()->GetDensityEffectData(); 116 } 117 } 118 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 120 121 G4double G4ICRU73QOModel::ComputeCrossSectionPerElectron( 122 const G4ParticleDefinition* p, 123 G4double kineticEnergy, 124 G4double cut, 125 G4double maxKinEnergy) 126 { 127 G4double cross = 0.0; 128 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 129 const G4double maxEnergy = std::min(tmax, maxKinEnergy); 130 const G4double cutEnergy = std::max(cut, lowestKinEnergy*massRate); 131 if(cutEnergy < maxEnergy) { 132 133 const G4double energy = kineticEnergy + mass; 134 const G4double energy2 = energy*energy; 135 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 136 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy) 137 - beta2*G4Log(maxEnergy/cutEnergy)/tmax; 138 139 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2; 140 } 141 142 return cross; 143 } 144 145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 146 147 G4double G4ICRU73QOModel::ComputeCrossSectionPerAtom( 148 const G4ParticleDefinition* p, 149 G4double kineticEnergy, 150 G4double Z, G4double, 151 G4double cutEnergy, 152 G4double maxEnergy) 153 { 154 G4double cross = Z*ComputeCrossSectionPerElectron 155 (p,kineticEnergy,cutEnergy,maxEnergy); 156 return cross; 157 } 158 159 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 160 161 G4double G4ICRU73QOModel::CrossSectionPerVolume( 162 const G4Material* material, 163 const G4ParticleDefinition* p, 164 G4double kineticEnergy, 165 G4double cutEnergy, 166 G4double maxEnergy) 167 { 168 G4double eDensity = material->GetElectronDensity(); 169 G4double cross = eDensity*ComputeCrossSectionPerElectron 170 (p,kineticEnergy,cutEnergy,maxEnergy); 171 return cross; 172 } 173 174 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 175 176 G4double G4ICRU73QOModel::ComputeDEDXPerVolume(const G4Material* material, 177 const G4ParticleDefinition* p, 178 G4double kineticEnergy, 179 G4double cut) 180 { 181 SetParticle(p); 182 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 183 const G4double tkin = kineticEnergy/massRate; 184 const G4double cutEnergy = std::max(cut, lowestKinEnergy*massRate); 185 G4double dedx = 0.0; 186 if(tkin > lowestKinEnergy) { dedx = DEDX(material, tkin); } 187 else { dedx = DEDX(material, lowestKinEnergy)*sqrt(tkin/lowestKinEnergy); } 188 189 if (cutEnergy < tmax) { 190 191 const G4double tau = kineticEnergy/mass; 192 const G4double x = cutEnergy/tmax; 193 dedx += (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) * 194 CLHEP::twopi_mc2_rcl2 *chargeSquare * material->GetElectronDensity(); 195 } 196 dedx = std::max(dedx, 0.0); 197 return dedx; 198 } 199 200 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 201 202 G4double G4ICRU73QOModel::DEDX(const G4Material* material, 203 G4double kineticEnergy) 204 { 205 G4double eloss = 0.0; 206 const std::size_t numberOfElements = material->GetNumberOfElements(); 207 const G4double* theAtomicNumDensityVector = 208 material->GetAtomicNumDensityVector(); 209 210 // Bragg's rule calculation 211 const G4ElementVector* theElementVector = 212 material->GetElementVector() ; 213 214 // loop for the elements in the material 215 for (std::size_t i=0; i<numberOfElements; ++i) 216 { 217 const G4Element* element = (*theElementVector)[i] ; 218 eloss += DEDXPerElement(element->GetZasInt(), kineticEnergy) 219 * theAtomicNumDensityVector[i] * element->GetZ(); 220 } 221 return eloss; 222 } 223 224 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 225 226 G4double G4ICRU73QOModel::DEDXPerElement(G4int AtomicNumber, 227 G4double kineticEnergy) 228 { 229 G4int Z = std::min(AtomicNumber, 97); 230 G4int nbOfShells = std::max(GetNumberOfShells(Z), 1); 231 232 G4double v = CLHEP::c_light * std::sqrt( 2.0*kineticEnergy/proton_mass_c2 ); 233 234 G4double fBetheVelocity = CLHEP::fine_structure_const*CLHEP::c_light/v; 235 236 G4double tau = kineticEnergy/proton_mass_c2; 237 G4double gam = tau + 1.0; 238 G4double bg2 = tau * (tau+2.0); 239 G4double beta2 = bg2/(gam*gam); 240 241 G4double l0Term = 0, l1Term = 0, l2Term = 0; 242 243 for (G4int nos = 0; nos < nbOfShells; ++nos){ 244 245 G4double NormalizedEnergy = (2.0*CLHEP::electron_mass_c2*beta2) / 246 GetShellEnergy(Z,nos); 247 248 G4double shStrength = GetShellStrength(Z,nos); 249 250 G4double l0 = GetL0(NormalizedEnergy); 251 l0Term += shStrength * l0; 252 253 G4double l1 = GetL1(NormalizedEnergy); 254 l1Term += shStrength * l1; 255 256 G4double l2 = GetL2(NormalizedEnergy); 257 l2Term += shStrength * l2; 258 259 } 260 G4double dedx = 2*CLHEP::twopi_mc2_rcl2*chargeSquare*factorBethe[Z]* 261 (l0Term + charge*fBetheVelocity*l1Term 262 + chargeSquare*fBetheVelocity*fBetheVelocity*l2Term)/beta2; 263 return dedx; 264 } 265 266 267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 268 269 G4double G4ICRU73QOModel::GetOscillatorEnergy(G4int Z, 270 G4int nbOfTheShell) const 271 { 272 G4int idx = denEffData->GetElementIndex(Z, kStateUndefined); 273 if(idx == -1) { idx = denEffData->GetElementIndex(Z-1, kStateUndefined); } 274 G4double PlasmaEnergy = denEffData->GetPlasmaEnergy(idx); 275 276 G4double PlasmaEnergy2 = PlasmaEnergy * PlasmaEnergy; 277 278 G4double plasmonTerm = 0.66667 279 * G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell) 280 * PlasmaEnergy2 / (Z*Z) ; 281 282 static const G4double exphalf = G4Exp(0.5); 283 G4double ionTerm = exphalf * 284 (G4AtomicShells::GetBindingEnergy(Z,nbOfTheShell)) ; 285 G4double ionTerm2 = ionTerm*ionTerm ; 286 287 G4double oscShellEnergy = std::sqrt( ionTerm2 + plasmonTerm ); 288 289 return oscShellEnergy; 290 } 291 292 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 293 294 G4int G4ICRU73QOModel::GetNumberOfShells(G4int Z) const 295 { 296 G4int nShell = 0; 297 298 if(indexZ[Z] >= 0) { 299 nShell = nbofShellsForElement[indexZ[Z]]; 300 } else { 301 nShell = G4AtomicShells::GetNumberOfShells(Z); 302 } 303 return nShell; 304 } 305 306 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 307 308 G4double G4ICRU73QOModel::GetShellEnergy(G4int Z, G4int nbOfTheShell) const 309 { 310 G4double shellEnergy = 0.; 311 312 G4int idx = indexZ[Z]; 313 314 if(idx >= 0) { 315 shellEnergy = ShellEnergy[startElemIndex[idx] + nbOfTheShell]*CLHEP::eV; 316 } else { 317 shellEnergy = GetOscillatorEnergy(Z, nbOfTheShell); 318 } 319 320 return shellEnergy; 321 } 322 323 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 324 325 G4double G4ICRU73QOModel::GetShellStrength(G4int Z, G4int nbOfTheShell) const 326 { 327 G4double shellStrength = 0.; 328 329 G4int idx = indexZ[Z]; 330 331 if(idx >= 0) { 332 shellStrength = SubShellOccupation[startElemIndex[idx] + nbOfTheShell] / Z; 333 } else { 334 shellStrength = G4double(G4AtomicShells::GetNumberOfElectrons(Z,nbOfTheShell))/Z; 335 } 336 337 return shellStrength; 338 } 339 340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 342 G4double G4ICRU73QOModel::GetL0(G4double normEnergy) const 343 { 344 G4int n; 345 346 for(n = 0; n < sizeL0; n++) { 347 if( normEnergy < L0[n][0] ) break; 348 } 349 if(0 == n) { n = 1; } 350 if(n >= sizeL0) { n = sizeL0 - 1; } 351 352 G4double l0 = L0[n][1]; 353 G4double l0p = L0[n-1][1]; 354 G4double bethe = l0p + (l0 - l0p) * ( normEnergy - L0[n-1][0]) / 355 (L0[n][0] - L0[n-1][0]); 356 357 return bethe ; 358 } 359 360 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 361 362 G4double G4ICRU73QOModel::GetL1(G4double normEnergy) const 363 { 364 G4int n; 365 366 for(n = 0; n < sizeL1; n++) { 367 if( normEnergy < L1[n][0] ) break; 368 } 369 if(0 == n) n = 1 ; 370 if(n >= sizeL1) n = sizeL1 - 1 ; 371 372 G4double l1 = L1[n][1]; 373 G4double l1p = L1[n-1][1]; 374 G4double barkas= l1p + (l1 - l1p) * ( normEnergy - L1[n-1][0]) / 375 (L1[n][0] - L1[n-1][0]); 376 377 return barkas; 378 } 379 380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 381 382 G4double G4ICRU73QOModel::GetL2(G4double normEnergy) const 383 { 384 G4int n; 385 for(n = 0; n < sizeL2; n++) { 386 if( normEnergy < L2[n][0] ) break; 387 } 388 if(0 == n) n = 1 ; 389 if(n >= sizeL2) n = sizeL2 - 1 ; 390 391 G4double l2 = L2[n][1]; 392 G4double l2p = L2[n-1][1]; 393 G4double bloch = l2p + (l2 - l2p) * ( normEnergy - L2[n-1][0]) / 394 (L2[n][0] - L2[n-1][0]); 395 396 return bloch; 397 } 398 399 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 400 401 void G4ICRU73QOModel::CorrectionsAlongStep(const G4MaterialCutsCouple*, 402 const G4DynamicParticle*, 403 const G4double&, 404 G4double&) 405 {} 406 407 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 408 409 void G4ICRU73QOModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 410 const G4MaterialCutsCouple* couple, 411 const G4DynamicParticle* dp, 412 G4double minEnergy, 413 G4double maxEnergy) 414 { 415 const G4double tmax = MaxSecondaryKinEnergy(dp); 416 const G4double xmax = std::min(tmax, maxEnergy); 417 const G4double xmin = std::max(minEnergy, lowestKinEnergy*massRate); 418 if(xmin >= xmax) { return; } 419 420 G4double kineticEnergy = dp->GetKineticEnergy(); 421 const G4double energy = kineticEnergy + mass; 422 const G4double energy2 = energy*energy; 423 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 424 G4double grej = 1.0; 425 G4double deltaKinEnergy, f; 426 427 G4ThreeVector direction = dp->GetMomentumDirection(); 428 429 // sampling follows ... 430 do { 431 G4double x = G4UniformRand(); 432 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - x) + xmax*x); 433 434 f = 1.0 - beta2*deltaKinEnergy/tmax; 435 436 if(f > grej) { 437 G4cout << "G4ICRU73QOModel::SampleSecondary Warning! " 438 << "Majorant " << grej << " < " 439 << f << " for e= " << deltaKinEnergy 440 << G4endl; 441 } 442 443 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 444 } while( grej*G4UniformRand() >= f ); 445 446 G4ThreeVector deltaDirection; 447 448 if(UseAngularGeneratorFlag()) { 449 const G4Material* mat = couple->GetMaterial(); 450 G4int Z = SelectRandomAtomNumber(mat); 451 452 deltaDirection = 453 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat); 454 455 } else { 456 457 G4double deltaMomentum = 458 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 459 G4double totMomentum = energy*sqrt(beta2); 460 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) / 461 (deltaMomentum * totMomentum); 462 if(cost > 1.0) { cost = 1.0; } 463 G4double sint = sqrt((1.0 - cost)*(1.0 + cost)); 464 465 G4double phi = twopi * G4UniformRand() ; 466 467 deltaDirection.set(sint*cos(phi),sint*sin(phi), cost) ; 468 deltaDirection.rotateUz(direction); 469 } 470 // create G4DynamicParticle object for delta ray 471 auto delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); 472 473 // Change kinematics of primary particle 474 kineticEnergy -= deltaKinEnergy; 475 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); 476 finalP = finalP.unit(); 477 478 fParticleChange->SetProposedKineticEnergy(kineticEnergy); 479 fParticleChange->SetProposedMomentumDirection(finalP); 480 481 vdp->push_back(delta); 482 } 483 484 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 485 486 G4double G4ICRU73QOModel::MaxSecondaryEnergy(const G4ParticleDefinition* pd, 487 G4double kinEnergy) 488 { 489 if(pd != particle) { SetParticle(pd); } 490 G4double tau = kinEnergy/mass; 491 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) / 492 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); 493 return tmax; 494 } 495 496 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 497 498 const G4int G4ICRU73QOModel::ZElementAvailable[NQOELEM] = 499 {1,2,4,6,7,8,10,13,14,-18, 500 22,26,28,29,32,36,42,47, 501 50,54,73,74,78,79,82,92}; 502 503 const G4int G4ICRU73QOModel::nbofShellsForElement[NQOELEM] = 504 {1,1,2,3,3,3,3,4,5,4, 505 5,5,5,5,6,4,6,6, 506 7,6,6,8,7,7,9,9}; 507 508 const G4int G4ICRU73QOModel::startElemIndex[NQOELEM] = 509 {0,1,2,4,7,10,13,16,20,25, 510 29,34,39,44,49,55,59,65, 511 71,78,84,90,98,105,112,121}; 512 513 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 514 515 // SubShellOccupation = Z * ShellStrength 516 const G4double G4ICRU73QOModel::SubShellOccupation[NQODATA] = 517 { 518 1.000, // H 0 519 2.000, // He 1 520 1.930, 2.070, // Be 2-3 521 1.992, 1.841, 2.167, // C 4-6 522 1.741, 1.680, 3.579, // N 7-9 523 1.802, 1.849, 4.349, // O 10-12 524 1.788, 2.028, 6.184, // Ne 13-15 525 1.623, 2.147, 6.259, 2.971, // Al 16-19 526 1.631, 2.094, 6.588, 2.041, 1.646, // Si 20-24 527 1.535, 8.655, 1.706, 6.104, // Ar 25-28 528 1.581, 8.358, 8.183, 2.000, 1.878, // Ti 29-33 529 1.516, 8.325, 8.461, 6.579, 1.119, // Fe 34-38 530 1.422, 7.81, 8.385, 8.216, 2.167, // Ni 39-43 531 1.458, 8.049, 8.79, 9.695, 1.008, // Cu 44-48 532 1.442, 7.791, 7.837, 10.122, 2.463, 2.345, // Ge 49-54 533 1.645, 7.765, 19.192, 7.398, // Kr 55-58 534 1.313, 6.409, 19.229, 8.633, 5.036, 1.380, // Mo 59-64 535 1.295, 6.219, 18.751, 8.748, 10.184, 1.803, // Ag 65-70 536 1.277, 6.099, 20.386, 8.011, 10.007, 2.272, 1.948, // Sn 71-77 537 1.563, 6.312, 21.868, 5.762, 11.245, 7.250, // Xe 78-83 538 0.9198, 6.5408, 18.9727, 24.9149, 15.0161, 6.6284, // Ta 84-89 539 1.202, 5.582, 19.527, 18.741, 8.411, 14.387, 4.042, 2.108, // W 90-97 540 1.159, 5.467, 18.802, 33.905, 8.300, 9.342, 1.025, // Pt 98-104 541 1.124, 5.331, 18.078, 34.604, 8.127, 10.414, 1.322, // Au 105-111 542 2.000, 8.000, 18.000, 18.000, 14.000, 8.000, 10.000, 2.000, 2.000, // Pb 112-120 543 2.000, 8.000, 18.000, 32.000, 18.000, 8.000, 2.000, 1.000, 3.000 // U 121-129 544 }; 545 546 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 547 548 // ShellEnergy in eV 549 const G4double G4ICRU73QOModel::ShellEnergy[NQODATA] = 550 { 551 19.2, // H 552 41.8, // He 553 209.11, 21.68, // Be 554 486.2, 60.95, 23.43, // C 555 732.61, 100.646, 23.550, // N 556 965.1, 129.85, 31.60, // O 557 1525.9, 234.9, 56.18, // Ne 558 2701, 476.5, 150.42, 16.89, // Al 559 3206.1, 586.4, 186.8, 23.52, 14.91, // Si 560 5551.6, 472.43, 124.85, 22.332, // Ar 561 8554.6, 850.58, 93.47, 39.19, 19.46, // Ti 562 12254.7, 1279.29, 200.35, 49.19, 17.66, // Fe 563 14346.9, 1532.28, 262.71, 74.37, 23.03, // Ni 564 15438.5, 1667.96, 294.1, 70.69, 16.447, // Cu 565 19022.1, 2150.79, 455.79, 179.87, 57.89, 20.95, // Ge 566 24643, 2906.4, 366.85, 22.24, // Kr 567 34394, 4365.3, 589.36, 129.42, 35.59, 18.42, // Mo 568 43664.3, 5824.91, 909.79, 175.47, 54.89, 19.63, // Ag 569 49948, 6818.2, 1036.1, 172.65, 70.89, 33.87, 14.54, // Sn 570 58987, 8159, 1296.6, 356.75, 101.03, 16.52, // Xe 571 88926, 18012, 3210, 575, 108.7, 30.8, // Ta 572 115025.9, 17827.44, 3214.36, 750.41, 305.21, 105.50, 38.09, 21.25, // W 573 128342, 20254, 3601.8, 608.1, 115.0, 42.75, 17.04, // Pt 574 131872, 20903, 3757.4, 682.1, 105.2, 44.89, 17.575, // Au 575 154449, 25067, 5105.0, 987.44, 247.59, 188.1, 40.61, 19.2, 15.17, // Pb 576 167282, 27868, 6022.7, 1020.4, 244.81, 51.33, 13, 11.06, 14.43 // U 577 }; 578 579 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 580 581 // Data for L0 from: Sigmund P., Haagerup U. Phys. Rev. A34 (1986) 892-910 582 const G4double G4ICRU73QOModel::L0[67][2] = 583 { 584 {0.00, 0.000001}, 585 {0.10, 0.000001}, 586 {0.12, 0.00001}, 587 {0.14, 0.00005}, 588 {0.16, 0.00014}, 589 {0.18, 0.00030}, 590 {0.20, 0.00057}, 591 {0.25, 0.00189}, 592 {0.30, 0.00429}, 593 {0.35, 0.00784}, 594 {0.40, 0.01248}, 595 {0.45, 0.01811}, 596 {0.50, 0.02462}, 597 {0.60, 0.03980}, 598 {0.70, 0.05731}, 599 {0.80, 0.07662}, 600 {0.90, 0.09733}, 601 {1.00, 0.11916}, 602 {1.20, 0.16532}, 603 {1.40, 0.21376}, 604 {1.60, 0.26362}, 605 {1.80, 0.31428}, 606 {2.00, 0.36532}, 607 {2.50, 0.49272}, 608 {3.00, 0.61765}, 609 {3.50, 0.73863}, 610 {4.00, 0.85496}, 611 {4.50, 0.96634}, 612 {5.00, 1.07272}, 613 {6.00, 1.27086}, 614 {7.00, 1.45075}, 615 {8.00, 1.61412}, 616 {9.00, 1.76277}, 617 {10.00, 1.89836}, 618 {12.00, 2.13625}, 619 {14.00, 2.33787}, 620 {16.00, 2.51093}, 621 {18.00, 2.66134}, 622 {20.00, 2.79358}, 623 {25.00, 3.06539}, 624 {30.00, 3.27902}, 625 {35.00, 3.45430}, 626 {40.00, 3.60281}, 627 {45.00, 3.73167}, 628 {50.00, 3.84555}, 629 {60.00, 4.04011}, 630 {70.00, 4.20264}, 631 {80.00, 4.34229}, 632 {90.00, 4.46474}, 633 {100.00, 4.57378}, 634 {120.00, 4.76155}, 635 {140.00, 4.91953}, 636 {160.00, 5.05590}, 637 {180.00, 5.17588}, 638 {200.00, 5.28299}, 639 {250.00, 5.50925}, 640 {300.00, 5.69364}, 641 {350.00, 5.84926}, 642 {400.00, 5.98388}, 643 {450.00, 6.10252}, 644 {500.00, 6.20856}, 645 {600.00, 6.39189}, 646 {700.00, 6.54677}, 647 {800.00, 6.68084}, 648 {900.00, 6.79905}, 649 {1000.00, 6.90474} 650 }; 651 652 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 653 654 // Data for L1 from: Mikkelsen H.H., Sigmund P. Phys. Rev. A40 (1989) 101-116 655 const G4double G4ICRU73QOModel::L1[22][2] = 656 { 657 {0.00, -0.000001}, 658 {0.10, -0.00001}, 659 {0.20, -0.00049}, 660 {0.30, -0.00084}, 661 {0.40, 0.00085}, 662 {0.50, 0.00519}, 663 {0.60, 0.01198}, 664 {0.70, 0.02074}, 665 {0.80, 0.03133}, 666 {0.90, 0.04369}, 667 {1.00, 0.06035}, 668 {2.00, 0.24023}, 669 {3.00, 0.44284}, 670 {4.00, 0.62012}, 671 {5.00, 0.77031}, 672 {6.00, 0.90390}, 673 {7.00, 1.02705}, 674 {8.00, 1.10867}, 675 {9.00, 1.17546}, 676 {10.00, 1.21599}, 677 {15.00, 1.24349}, 678 {20.00, 1.16752} 679 }; 680 681 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 682 683 // Data for L2 from: Mikkelsen H.H. Nucl. Instr. Meth. B58 (1991) 136-148 684 const G4double G4ICRU73QOModel::L2[14][2] = 685 { 686 {0.00, 0.000001}, 687 {0.10, 0.00001}, 688 {0.20, 0.00000}, 689 {0.40, -0.00120}, 690 {0.60, -0.00036}, 691 {0.80, 0.00372}, 692 {1.00, 0.01298}, 693 {2.00, 0.08296}, 694 {4.00, 0.21953}, 695 {6.00, 0.23903}, 696 {8.00, 0.20893}, 697 {10.00, 0.10879}, 698 {20.00, -0.88409}, 699 {40.00, -1.13902} 700 }; 701 702 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 703 704 // Correction obtained by V.Ivanchenko using G4BetheBlochModel 705 const G4double G4ICRU73QOModel::factorBethe[99] = { 1.0, 706 0.9637, 0.9872, 0.9469, 0.9875, 0.91, 0.989, 0.9507, 0.9773, 0.8621, 0.979, // 1 - 10 707 0.8357, 0.868, 0.9417, 0.9466, 0.8911, 0.905, 0.944, 0.9607, 0.928, 0.96, // 11 - 20 708 0.9098, 0.976, 0.8425, 0.8099, 0.7858, 0.947, 0.7248, 0.9106, 0.9246, 0.6821, // 21 - 30 709 0.7223, 0.9784, 0.774, 0.7953, 0.829, 0.9405, 0.8318, 0.8583, 0.8563, 0.8481, // 31 - 40 710 0.8207, 0.9033, 0.8063, 0.7837, 0.7818, 0.744, 0.875, 0.7693, 0.7871, 0.8459, // 41 - 50 711 0.8231, 0.8462, 0.853, 0.8736, 0.856, 0.8762, 0.8629, 0.8323, 0.8064, 0.7828, // 51 - 60 712 0.7533, 0.7273, 0.7093, 0.7157, 0.6823, 0.6612, 0.6418, 0.6395, 0.6323, 0.6221, // 61 - 70 713 0.6497, 0.6746, 0.8568, 0.8541, 0.6958, 0.6962, 0.7051, 0.863, 0.8588, 0.7226, // 71 - 80 714 0.7454, 0.78, 0.7783, 0.7996, 0.8216, 0.8632, 0.8558, 0.8792, 0.8745, 0.8676, // 81 - 90 715 0.8321, 0.8272, 0.7999, 0.7934, 0.7787, 0.7851, 0.7692, 0.7598}; 716