Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4BraggIonModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // -------------------------------------------------------------------
 27 //
 28 // GEANT4 Class file
 29 //
 30 //
 31 // File name:   G4BraggIonModel
 32 //
 33 // Author:        Vladimir Ivanchenko
 34 //
 35 // Creation date: 13.10.2004
 36 //
 37 // Modifications:
 38 // 11-05-05 Major optimisation of internal interfaces (V.Ivantchenko)
 39 // 29-11-05 Do not use G4Alpha class (V.Ivantchenko)
 40 // 15-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
 41 // 25-04-06 Add stopping data from ASTAR (V.Ivanchenko)
 42 // 23-10-06 Reduce lowestKinEnergy to 0.25 keV (V.Ivanchenko)
 43 // 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio, 
 44 //          CorrectionsAlongStep needed for ions(V.Ivanchenko)
 45 //
 46 
 47 // Class Description:
 48 //
 49 // Implementation of energy loss and delta-electron production by
 50 // slow charged heavy particles
 51 
 52 // -------------------------------------------------------------------
 53 //
 54 
 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 56 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 57 
 58 #include "G4BraggIonModel.hh"
 59 #include "G4PhysicalConstants.hh"
 60 #include "G4SystemOfUnits.hh"
 61 #include "Randomize.hh"
 62 #include "G4Electron.hh"
 63 #include "G4ParticleChangeForLoss.hh"
 64 #include "G4EmCorrections.hh"
 65 #include "G4DeltaAngle.hh"
 66 #include "G4ICRU90StoppingData.hh"
 67 #include "G4ASTARStopping.hh"
 68 #include "G4PSTARStopping.hh"
 69 #include "G4NistManager.hh"
 70 #include "G4Log.hh"
 71 #include "G4Exp.hh"
 72 #include "G4AutoLock.hh"
 73 
 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 75 
 76 G4ASTARStopping* G4BraggIonModel::fASTAR = nullptr;
 77 
 78 namespace
 79 {
 80   G4Mutex alphaMutex = G4MUTEX_INITIALIZER;
 81 }
 82 
 83 G4BraggIonModel::G4BraggIonModel(const G4ParticleDefinition* p,
 84                                  const G4String& nam)
 85   : G4BraggModel(p, nam)
 86 {
 87   HeMass = 3.727417*CLHEP::GeV;
 88   massFactor = 1000.*CLHEP::amu_c2/HeMass;
 89 }
 90 
 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 92 
 93 G4BraggIonModel::~G4BraggIonModel()
 94 {
 95   if(isFirstAlpha) { 
 96     delete fASTAR; 
 97     fASTAR = nullptr;
 98   }
 99 }
100 
101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
102 
103 void G4BraggIonModel::Initialise(const G4ParticleDefinition* p,
104                                  const G4DataVector& ref)
105 {
106   G4BraggModel::Initialise(p, ref);
107   const G4String& pname = particle->GetParticleName();
108   if(pname == "alpha") { isAlpha = true; }
109   if(isAlpha && fASTAR == nullptr) {
110     G4AutoLock l(&alphaMutex);
111     if(fASTAR == nullptr) {
112       isFirstAlpha = true;
113       fASTAR = new G4ASTARStopping();
114     }
115     l.unlock();
116   }
117   if(isFirstAlpha) {
118     fASTAR->Initialise();
119   }
120 }
121 
122 
123 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
124 
125 G4double G4BraggIonModel::GetChargeSquareRatio(const G4ParticleDefinition* p,
126                                                const G4Material* mat,
127                                                G4double kinEnergy)
128 {
129   // this method is called only for ions, so no check if it is an ion
130   if(isAlpha) { return 1.0; }
131   return G4BraggModel::GetChargeSquareRatio(p, mat, kinEnergy);
132 }
133 
134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
135 
136 G4double G4BraggIonModel::ComputeCrossSectionPerAtom(
137                                            const G4ParticleDefinition* p,
138                                                  G4double kinEnergy,
139                                                  G4double Z, G4double,
140                                                  G4double cutEnergy,
141                                                  G4double maxEnergy)
142 {
143   G4double sigma = 
144     Z*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy);
145   if(isAlpha) {
146     sigma *= (HeEffChargeSquare(Z, kinEnergy/CLHEP::MeV)/chargeSquare);
147   }
148   return sigma;
149 }
150 
151 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
152 
153 G4double G4BraggIonModel::CrossSectionPerVolume(
154                                            const G4Material* material,
155                                            const G4ParticleDefinition* p,
156                                                  G4double kinEnergy,
157                                                  G4double cutEnergy,
158                                                  G4double maxEnergy)
159 {
160   G4double sigma = material->GetElectronDensity()* 
161     ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy);
162   if(isAlpha) {
163     const G4double zeff = material->GetTotNbOfElectPerVolume()/
164       material->GetTotNbOfAtomsPerVolume();
165     sigma *= (HeEffChargeSquare(zeff, kinEnergy/CLHEP::MeV)/chargeSquare);
166   }
167   return sigma;
168 }
169 
170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171 
172 G4double G4BraggIonModel::ComputeDEDXPerVolume(const G4Material* material,
173                                                const G4ParticleDefinition* p,
174                                                G4double kineticEnergy,
175                                                G4double cut)
176 {
177   const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy);
178   const G4double tlim = lowestKinEnergy*massRate;
179   const G4double tmin = std::max(std::min(cut, tmax), tlim);
180   G4double dedx = 0.0;
181 
182   if(kineticEnergy < tlim) {
183     dedx = HeDEDX(material, tlim)*std::sqrt(kineticEnergy/tlim);
184   } else {
185     dedx = HeDEDX(material, kineticEnergy);
186 
187     if (tmin < tmax) {
188       const G4double tau = kineticEnergy/mass;
189       const G4double x   = tmin/tmax;
190 
191       G4double del = 
192         (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) * 
193   CLHEP::twopi_mc2_rcl2*material->GetElectronDensity();
194       if(isAlpha) {
195   const G4double zeff = material->GetTotNbOfElectPerVolume()/
196     material->GetTotNbOfAtomsPerVolume();
197   heChargeSquare = HeEffChargeSquare(zeff, kineticEnergy/CLHEP::MeV);
198   del *= heChargeSquare;
199       }
200       dedx += del;
201     }
202   }
203   dedx = std::max(dedx, 0.0);
204   /*  
205     G4cout << "BraggIon: " << material->GetName() 
206            << " E(MeV)=" << kineticEnergy/MeV
207            << " Tmin(MeV)=" << tmin << " dedx(MeV*cm^2/g)=" 
208            << dedx*gram/(MeV*cm2*material->GetDensity()) 
209            << " q2=" << chargeSquare << G4endl;
210   */
211   return dedx;
212 }
213 
214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
215 
216 void G4BraggIonModel::CorrectionsAlongStep(const G4MaterialCutsCouple* couple,
217                                            const G4DynamicParticle* dp,
218                                            const G4double&,
219                                            G4double& eloss)
220 {
221   // no correction for alpha
222   if(isAlpha) { return; }
223 
224   // no correction at a small step at the last step
225   const G4double preKinEnergy = dp->GetKineticEnergy();
226   if(eloss >= preKinEnergy || eloss < preKinEnergy*0.05) { return; }
227 
228   // corrections only for ions
229   const G4ParticleDefinition* p = dp->GetDefinition();
230   if(p != particle) { SetParticle(p); }
231 
232   // effective energy and charge at a step
233   const G4Material* mat = couple->GetMaterial();
234   const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5);
235   const G4double q20 = corr->EffectiveChargeSquareRatio(p, mat, preKinEnergy);
236   const G4double q2 = corr->EffectiveChargeSquareRatio(p, mat, e);
237   const G4double qfactor = q2/q20;
238   /*
239     G4cout << "G4BraggIonModel::CorrectionsAlongStep: Epre(MeV)="
240     << preKinEnergy << " Eeff(MeV)=" << e
241     << " eloss=" << eloss << " elossnew=" << eloss*qfactor 
242     << " qfactor=" << qfactor << " Qpre=" << q20 
243     << p->GetParticleName() <<G4endl;
244   */
245   eloss *= qfactor;
246 }
247 
248 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
249 
250 G4int G4BraggIonModel::HasMaterialForHe(const G4Material* mat) const
251 {
252   const G4String& chFormula = mat->GetChemicalFormula();
253   if(chFormula.empty()) { return -1; }
254 
255   // ICRU Report N49, 1993. Ziegler model for He.
256   
257   static const G4int numberOfMolecula = 11;
258   static const G4String molName[numberOfMolecula] = {
259     "CaF_2",  "Cellulose_Nitrate",  "LiF", "Policarbonate",  
260     "(C_2H_4)_N-Polyethylene",  "(C_2H_4)_N-Polymethly_Methacralate",
261     "Polysterene", "SiO_2", "NaI", "H_2O",
262     "Graphite" };
263 
264   // Search for the material in the table
265   for (G4int i=0; i<numberOfMolecula; ++i) {
266     if (chFormula == molName[i]) {  
267       return i;
268     }
269   }
270   return -1;
271 }
272 
273 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
274 
275 G4double G4BraggIonModel::HeStoppingPower(const G4double kineticEnergy) const
276 {
277   G4double ionloss = 0.0;
278   if (iMolecula >= 0) {
279   
280     // The data and the fit from: 
281     // ICRU Report N49, 1993. Ziegler's model for alpha
282     // He energy in internal units of parametrisation formula (MeV)
283     // Input scaled energy of a proton or GenericIon
284     G4double T = kineticEnergy/(massRate*CLHEP::MeV);
285 
286     static const G4float a[11][5] = {
287        {9.43672f, 0.54398f, 84.341f,  1.3705f, 57.422f},
288        {67.1503f, 0.41409f, 404.512f, 148.97f, 20.99f},
289        {5.11203f, 0.453f,   36.718f,  50.6f,   28.058f}, 
290        {61.793f,  0.48445f, 361.537f, 57.889f, 50.674f},
291        {7.83464f, 0.49804f, 160.452f, 3.192f,  0.71922f},
292        {19.729f,  0.52153f, 162.341f, 58.35f,  25.668f}, 
293        {26.4648f, 0.50112f, 188.913f, 30.079f, 16.509f},
294        {7.8655f,  0.5205f,  63.96f,   51.32f,  67.775f},
295        {8.8965f,  0.5148f,  339.36f,  1.7205f, 0.70423f},
296        {2.959f,   0.53255f, 34.247f,  60.655f, 15.153f}, 
297        {3.80133f, 0.41590f, 12.9966f, 117.83f, 242.28f} };   
298 
299     static const G4double atomicWeight[11] = {
300        101.96128f, 44.0098f, 16.0426f, 28.0536f, 42.0804f,
301        104.1512f,  44.665f,  60.0843f, 18.0152f, 18.0152f, 12.0f};       
302 
303     const G4int i = iMolecula;
304 
305     G4double slow = (G4double)(a[i][0]);
306 
307     G4double x1 = (G4double)(a[i][1]);
308     G4double x2 = (G4double)(a[i][2]);
309     G4double x3 = (G4double)(a[i][3]);
310     G4double x4 = (G4double)(a[i][4]);
311 
312     // Free electron gas model
313     if ( T < 0.001 ) {
314       G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 ) *x2*1000.0;
315       ionloss  = slow*shigh / (slow + shigh) ;
316       ionloss *= std::sqrt(T*1000.0) ;
317 
318       // Main parametrisation
319     } else {
320       slow  *= G4Exp(G4Log(T*1000.0)*x1) ;
321       G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T ;
322       ionloss = slow*shigh / (slow + shigh) ;
323        /*
324          G4cout << "## " << i << ". T= " << T << " slow= " << slow
325          << " a0= " << a[i][0] << " a1= " << a[i][1] 
326          << " shigh= " << shigh 
327          << " dedx= " << ionloss << " q^2= " <<  HeEffChargeSquare(z, T*MeV)
328          << G4endl;
329        */
330     }
331     ionloss = std::max(ionloss, 0.0) * atomicWeight[iMolecula];
332   }
333   return ionloss;
334 }
335 
336 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
337 
338 G4double G4BraggIonModel::HeElectronicStoppingPower(const G4int z,
339                           const G4double kineticEnergy) const
340 {
341   G4double ionloss ;
342   G4int i = std::min(z-1, 91);  // index of atom
343   //G4cout << "ElectronicStoppingPower z=" << z << " i=" << i 
344   // << " E=" << kineticEnergy << G4endl;
345   // The data and the fit from:
346   // ICRU Report 49, 1993. Ziegler's type of parametrisations.
347   // Proton kinetic energy for parametrisation (keV/amu)
348   // He energy in internal units of parametrisation formula (MeV)
349   //G4double T = kineticEnergy*rateMassHe2p/CLHEP::MeV;
350   G4double T = kineticEnergy/CLHEP::MeV;
351 
352   static const G4float a[92][5] = {
353     {  0.35485f, 0.6456f, 6.01525f,  20.8933f, 4.3515f
354    },{ 0.58f,    0.59f,   6.3f,      130.0f,   44.07f
355    },{ 1.42f,    0.49f,   12.25f,    32.0f,    9.161f
356    },{ 2.206f,   0.51f,   15.32f,    0.25f,    8.995f //Be Ziegler77
357        // },{ 2.1895f,  0.47183,7.2362f,   134.30f,  197.96f //Be from ICRU
358    },{ 3.691f,   0.4128f, 18.48f,    50.72f,   9.0f
359    },{ 3.83523f, 0.42993f,12.6125f,  227.41f,  188.97f
360        // },{ 1.9259f,  0.5550f, 27.15125f, 26.0665f, 6.2768f //too many digits
361    },{ 1.9259f,  0.5550f, 27.1513f,  26.0665f, 6.2768f
362    },{ 2.81015f, 0.4759f, 50.0253f,  10.556f,  1.0382f
363    },{ 1.533f,   0.531f,  40.44f,    18.41f,   2.718f
364    },{ 2.303f,   0.4861f, 37.01f,    37.96f,   5.092f
365        // Z= 11-20
366    },{ 9.894f,   0.3081f, 23.65f,    0.384f,   92.93f
367    },{ 4.3f,     0.47f,   34.3f,     3.3f,     12.74f
368    },{ 2.5f,     0.625f,  45.7f,     0.1f,     4.359f
369    },{ 2.1f,     0.65f,   49.34f,    1.788f,   4.133f
370    },{ 1.729f,   0.6562f, 53.41f,    2.405f,   3.845f
371    },{ 1.402f,   0.6791f, 58.98f,    3.528f,   3.211f
372    },{ 1.117f,   0.7044f, 69.69f,    3.705f,   2.156f
373    },{ 2.291f,   0.6284f, 73.88f,    4.478f,   2.066f
374    },{ 8.554f,   0.3817f, 83.61f,    11.84f,   1.875f
375    },{ 6.297f,   0.4622f, 65.39f,    10.14f,   5.036f
376        // Z= 21-30     
377    },{ 5.307f,   0.4918f, 61.74f,    12.4f,    6.665f
378    },{ 4.71f,    0.5087f, 65.28f,    8.806f,   5.948f
379    },{ 6.151f,   0.4524f, 83.0f,     18.31f,   2.71f
380    },{ 6.57f,    0.4322f, 84.76f,    15.53f,   2.779f
381    },{ 5.738f,   0.4492f, 84.6f,     14.18f,   3.101f
382    },{ 5.013f,   0.4707f, 85.8f,     16.55f,   3.211f
383    },{ 4.32f,    0.4947f, 76.14f,    10.85f,   5.441f
384    },{ 4.652f,   0.4571f, 80.73f,    22.0f,    4.952f
385    },{ 3.114f,   0.5236f, 76.67f,    7.62f,    6.385f
386    },{ 3.114f,   0.5236f, 76.67f,    7.62f,    7.502f
387        // Z= 31-40
388    },{ 3.114f,   0.5236f, 76.67f,    7.62f,    8.514f
389    },{ 5.746f,   0.4662f, 79.24f,    1.185f,   7.993f
390    },{ 2.792f,   0.6346f, 106.1f,    0.2986f,  2.331f
391    },{ 4.667f,   0.5095f, 124.3f,    2.102f,   1.667f
392    },{ 2.44f,    0.6346f, 105.0f,    0.83f,    2.851f
393    },{ 1.413f,   0.7377f, 147.9f,    1.466f,   1.016f
394    },{ 11.72f,   0.3826f, 102.8f,    9.231f,   4.371f
395    },{ 7.126f,   0.4804f, 119.3f,    5.784f,   2.454f
396    },{ 11.61f,   0.3955f, 146.7f,    7.031f,   1.423f
397    },{ 10.99f,   0.41f,   163.9f,    7.1f,     1.052f
398        // Z= 41-50
399    },{ 9.241f,   0.4275f, 163.1f,    7.954f,   1.102f
400    },{ 9.276f,   0.418f,  157.1f,    8.038f,   1.29f
401    },{ 3.999f,   0.6152f, 97.6f,     1.297f,   5.792f
402    },{ 4.306f,   0.5658f, 97.99f,    5.514f,   5.754f
403    },{ 3.615f,   0.6197f, 86.26f,    0.333f,   8.689f
404    },{ 5.8f,     0.49f,   147.2f,    6.903f,   1.289f
405    },{ 5.6f,     0.49f,   130.0f,    10.0f,    2.844f
406    },{ 3.55f,    0.6068f, 124.7f,    1.112f,   3.119f
407    },{ 3.6f,     0.62f,   105.8f,    0.1692f,  6.026f
408    },{ 5.4f,     0.53f,   103.1f,    3.931f,   7.767f
409        // Z= 51-60
410    },{ 3.97f,    0.6459f, 131.8f,    0.2233f,  2.723f
411    },{ 3.65f,    0.64f,   126.8f,    0.6834f,  3.411f
412    },{ 3.118f,   0.6519f, 164.9f,    1.208f,   1.51f
413    },{ 3.949f,   0.6209f, 200.5f,    1.878f,   0.9126f
414    },{ 14.4f,    0.3923f, 152.5f,    8.354f,   2.597f
415    },{ 10.99f,   0.4599f, 138.4f,    4.811f,   3.726f
416    },{ 16.6f,    0.3773f, 224.1f,    6.28f,    0.9121f
417    },{ 10.54f,   0.4533f, 159.3f,    4.832f,   2.529f
418    },{ 10.33f,   0.4502f, 162.0f,    5.132f,   2.444f
419    },{ 10.15f,   0.4471f, 165.6f,    5.378f,   2.328f
420        // Z= 61-70
421    },{ 9.976f,   0.4439f, 168.0f,    5.721f,   2.258f
422    },{ 9.804f,   0.4408f, 176.2f,    5.675f,   1.997f
423    },{ 14.22f,   0.363f,  228.4f,    7.024f,   1.016f
424    },{ 9.952f,   0.4318f, 233.5f,    5.065f,   0.9244f
425    },{ 9.272f,   0.4345f, 210.0f,    4.911f,   1.258f
426    },{ 10.13f,   0.4146f, 225.7f,    5.525f,   1.055f
427    },{ 8.949f,   0.4304f, 213.3f,    5.071f,   1.221f
428    },{ 11.94f,   0.3783f, 247.2f,    6.655f,   0.849f
429    },{ 8.472f,   0.4405f, 195.5f,    4.051f,   1.604f
430    },{ 8.301f,   0.4399f, 203.7f,    3.667f,   1.459f
431        // Z= 71-80
432    },{ 6.567f,   0.4858f, 193.0f,    2.65f,    1.66f
433    },{ 5.951f,   0.5016f, 196.1f,    2.662f,   1.589f
434    },{ 7.495f,   0.4523f, 251.4f,    3.433f,   0.8619f
435    },{ 6.335f,   0.4825f, 255.1f,    2.834f,   0.8228f
436    },{ 4.314f,   0.5558f, 214.8f,    2.354f,   1.263f
437    },{ 4.02f,    0.5681f, 219.9f,    2.402f,   1.191f
438    },{ 3.836f,   0.5765f, 210.2f,    2.742f,   1.305f
439    },{ 4.68f,    0.5247f, 244.7f,    2.749f,   0.8962f
440    },{ 2.892f,   0.6204f, 208.6f,    2.415f,   1.416f //Au Z77
441        // },{ 3.223f,   0.5883f, 232.7f,   2.954f,    1.05  //Au ICRU
442    },{ 2.892f,   0.6204f, 208.6f,    2.415f,   1.416f
443        // Z= 81-90
444    },{ 4.728f,   0.5522f, 217.0f,    3.091f,   1.386f
445    },{ 6.18f,    0.52f,   170.0f,    4.0f,     3.224f
446    },{ 9.0f,     0.47f,   198.0f,    3.8f,     2.032f
447    },{ 2.324f,   0.6997f, 216.0f,    1.599f,   1.399f
448    },{ 1.961f,   0.7286f, 223.0f,    1.621f,   1.296f
449    },{ 1.75f,    0.7427f, 350.1f,    0.9789f,  0.5507f
450    },{ 10.31f,   0.4613f, 261.2f,    4.738f,   0.9899f
451    },{ 7.962f,   0.519f,  235.7f,    4.347f,   1.313f
452    },{ 6.227f,   0.5645f, 231.9f,    3.961f,   1.379f
453    },{ 5.246f,   0.5947f, 228.6f,    4.027f,   1.432f
454        // Z= 91-92
455    },{ 5.408f,   0.5811f, 235.7f,    3.961f,   1.358f
456    },{ 5.218f,   0.5828f, 245.0f,    3.838f,   1.25f}
457   };
458 
459   G4double slow = (G4double)(a[i][0]);
460 
461   G4double x1 = (G4double)(a[i][1]);
462   G4double x2 = (G4double)(a[i][2]);
463   G4double x3 = (G4double)(a[i][3]);
464   G4double x4 = (G4double)(a[i][4]);
465 
466   // Free electron gas model
467   if ( T < 0.001 ) {
468     G4double shigh = G4Log( 1.0 + x3*1000.0 + x4*0.001 )* x2*1000.0;
469     ionloss  = slow*shigh*std::sqrt(T*1000.0)  / (slow + shigh) ;
470 
471   // Main parametrisation
472   } else {
473     slow  *= G4Exp(G4Log(T*1000.0)*x1);
474     G4double shigh = G4Log( 1.0 + x3/T + x4*T ) * x2/T;
475     ionloss = slow*shigh / (slow + shigh) ;
476     /*
477     G4cout << "## " << i << ". T= " << T << " slow= " << slow
478            << " a0= " << a[i][0] << " a1= " << a[i][1] 
479            << " shigh= " << shigh 
480            << " dedx= " << ionloss << " q^2= " <<  HeEffChargeSquare(z, T) 
481            << G4endl;
482     */
483   }
484   ionloss = std::max(ionloss, 0.0);
485   return ionloss;
486 }
487 
488 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
489 
490 G4double G4BraggIonModel::HeDEDX(const G4Material* material,
491                                const G4double aEnergy)
492 {
493   // aEnergy is energy of alpha
494   G4double eloss = 0.0;
495   // check DB
496   if(material != currentMaterial) {
497     currentMaterial = material;
498     baseMaterial = material->GetBaseMaterial() 
499       ? material->GetBaseMaterial() : material;
500     iPSTAR    = -1;
501     iASTAR    = -1;
502     iMolecula = -1;
503     iICRU90 = (nullptr != fICRU90) ? fICRU90->GetIndex(baseMaterial) : -1;
504     
505     if(iICRU90 < 0) {
506       if(isAlpha) {
507   iASTAR = fASTAR->GetIndex(baseMaterial); 
508   if(iASTAR < 0) { iMolecula = HasMaterialForHe(baseMaterial); }
509       } else {
510   iPSTAR = fPSTAR->GetIndex(baseMaterial); 
511       }
512     }
513     /*    
514     G4cout << "%%% " <<material->GetName() << "  iMolecula= " 
515            << iMolecula << "  iASTAR= " << iASTAR 
516            << "  iICRU90= " << iICRU90<< G4endl; 
517     */
518   }
519   // ICRU90 
520   if(iICRU90 >= 0) {
521     eloss = (isAlpha) 
522       ? fICRU90->GetElectronicDEDXforAlpha(iICRU90, aEnergy)
523       : fICRU90->GetElectronicDEDXforProton(iICRU90, aEnergy);
524     if(eloss > 0.0) { return eloss*material->GetDensity(); }
525   }
526   // PSTAR parameterisation
527   if( iPSTAR >= 0 ) {
528     return fPSTAR->GetElectronicDEDX(iPSTAR, aEnergy)
529       *material->GetDensity();
530   }
531   // ASTAR
532   if( iASTAR >= 0 ) {
533     eloss = fASTAR->GetElectronicDEDX(iASTAR, aEnergy);
534     /*
535     G4cout << "ASTAR:  E=" << aEnergy 
536      << " dedx=" << eloss*material->GetDensity() 
537      << "  " << particle->GetParticleName() << G4endl;
538     */
539     if(eloss > 0.0) { return eloss*material->GetDensity(); }
540   }
541 
542   const std::size_t numberOfElements = material->GetNumberOfElements();
543   const G4ElementVector* theElmVector = material->GetElementVector();
544   const G4double* theAtomicNumDensityVector =
545     material->GetAtomicNumDensityVector();
546 
547   // molecular data use proton stopping power table
548   // element data from ICRU49 include data for alpha
549   if(iMolecula >= 0) {
550     const G4double zeff = material->GetTotNbOfElectPerVolume()/
551       material->GetTotNbOfAtomsPerVolume();
552     heChargeSquare = HeEffChargeSquare(zeff, aEnergy/CLHEP::MeV);
553     eloss = HeStoppingPower(aEnergy)*heChargeSquare*material->GetDensity()/amu;
554 
555     // pure material
556   } else if(1 == numberOfElements) {
557 
558     const G4Element* element = (*theElmVector)[0];
559     eloss = HeElectronicStoppingPower(element->GetZasInt(), aEnergy)
560       * (material->GetTotNbOfAtomsPerVolume());
561 
562   // Brugg's rule calculation
563   } else {
564     //  loop for the elements in the material
565     for (std::size_t i=0; i<numberOfElements; ++i) {
566       const G4Element* element = (*theElmVector)[i];
567       eloss += HeElectronicStoppingPower(element->GetZasInt(), aEnergy)
568   * theAtomicNumDensityVector[i];
569     }
570   }
571   return eloss*theZieglerFactor;
572 }
573 
574 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
575 
576 G4double 
577 G4BraggIonModel::HeEffChargeSquare(const G4double z,
578                                    const G4double kinEnergyHeInMeV) const
579 {
580   // The aproximation of He effective charge from:
581   // J.F.Ziegler, J.P. Biersack, U. Littmark
582   // The Stopping and Range of Ions in Matter,
583   // Vol.1, Pergamon Press, 1985
584 
585   static const G4double c[6] = {0.2865,  0.1266, -0.001429,
586                                 0.02402,-0.01135, 0.001475};
587 
588   G4double e = std::max(0.0, G4Log(kinEnergyHeInMeV*massFactor));
589   G4double x = c[0] ;
590   G4double y = 1.0 ;
591   for (G4int i=1; i<6; ++i) {
592     y *= e;
593     x += y * c[i];
594   }
595 
596   G4double w = 7.6 -  e ;
597   w = 1.0 + (0.007 + 0.00005*z) * G4Exp( -w*w ) ;
598   w = 4.0 * (1.0 - G4Exp(-x)) * w * w ;
599 
600   return w;
601 }
602 
603 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
604 
605