Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/src/G4BetheHeitler5DModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class file
 30 //
 31 //
 32 // File name:     G4BetheHeitler5DModel.cc
 33 //
 34 // Authors:
 35 // Igor Semeniouk and Denis Bernard,
 36 // LLR, Ecole polytechnique & CNRS/IN2P3, 91128 Palaiseau, France
 37 //
 38 // Acknowledgement of the support of the French National Research Agency
 39 // (ANR-13-BS05-0002).
 40 //
 41 // Reference: Nucl. Instrum. Meth. A 899 (2018) 85 (arXiv:1802.08253 [hep-ph])
 42 //            Nucl. Instrum. Meth., A 936 (2019) 290
 43 //
 44 // Class Description:
 45 //
 46 // Generates the conversion of a high-energy photon to an e+e- pair, either in the field of an
 47 // atomic electron (triplet) or nucleus (nuclear).
 48 // Samples the five-dimensional (5D) differential cross-section analytical expression:
 49 // . Non polarized conversion:
 50 //   H.A. Bethe, W. Heitler, Proc. R. Soc. Lond. Ser. A 146 (1934) 83.
 51 // . Polarized conversion:
 52 //   T. H. Berlin and L. Madansky, Phys. Rev. 78 (1950) 623,
 53 //   M. M. May, Phys. Rev. 84 (1951) 265,
 54 //   J. M. Jauch and F. Rohrlich, The theory of photons and electrons, 1976.
 55 //
 56 // All the above expressions are named "Bethe-Heitler" here.
 57 //
 58 // Bethe & Heitler, put in Feynman diagram parlance, compute only the two dominant diagrams of
 59 // the first order Born development, which is an excellent approximation for nuclear conversion
 60 // and for high-energy triplet conversion.
 61 //
 62 // Only the linear polarisation of the incoming photon takes part in these expressions.
 63 // The circular polarisation of the incoming photon does not (take part) and no polarisation
 64 // is transfered to the final leptons.
 65 //
 66 // In case conversion takes place in the field of an isolated nucleus or electron, the bare
 67 // Bethe-Heitler expression is used.
 68 //
 69 // In case the nucleus or the electron are part of an atom, the screening of the target field
 70 // by the other electrons of the atom is described by a simple form factor, function of q2:
 71 // . nuclear: N.F. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 1934.
 72 // . triplet: J.A. Wheeler and W.E. Lamb, Phys. Rev. 55 (1939) 858.
 73 //
 74 // The nuclear form factor that affects the probability of very large-q2 events, is not considered.
 75 //
 76 // In principle the code is valid from threshold, that is from 2 * m_e c^2 for nuclear and from
 77 // 4 * m_e c^2 for triplet, up to infinity, while in pratice the divergence of the differential
 78 // cross section at small q2 and, at high-energy, at small polar angle, make it break down at
 79 // some point that depends on machine precision.
 80 //
 81 // Very-high-energy (above a few tens of TeV) LPM suppression effects in the normalized differential
 82 // cross-section are not considered.
 83 //
 84 // The 5D differential cross section is sampled without any high-energy nor small
 85 // angle approximation(s).
 86 // The generation is strictly energy-momentum conserving when all particles in the final state
 87 // are taken into account, that is, including the recoiling target.
 88 // (In contrast with the BH expressions taken at face values, for which the electron energy is
 89 // taken to be EMinus = GammaEnergy - EPlus)
 90 //
 91 // Tests include the examination of 1D distributions: see TestEm15
 92 //
 93 // Total cross sections are not computed (we inherit from other classes).
 94 // We just convert a photon on a target when asked to do so.
 95 //
 96 // Pure nuclear, pure triplet and 1/Z triplet/nuclear mixture can be generated.
 97 //
 98 // -------------------------------------------------------------------
 99 
100 #include "G4BetheHeitler5DModel.hh"
101 #include "G4EmParameters.hh"
102 
103 #include "G4PhysicalConstants.hh"
104 #include "G4SystemOfUnits.hh"
105 #include "G4Electron.hh"
106 #include "G4Positron.hh"
107 #include "G4Gamma.hh"
108 #include "G4IonTable.hh"
109 #include "G4NucleiProperties.hh"
110 
111 #include "Randomize.hh"
112 #include "G4ParticleChangeForGamma.hh"
113 #include "G4Pow.hh"
114 #include "G4Log.hh"
115 #include "G4Exp.hh"
116 
117 #include "G4LorentzVector.hh"
118 #include "G4ThreeVector.hh"
119 #include "G4RotationMatrix.hh"
120 
121 #include <cassert>
122 
123 const G4int kEPair = 0;
124 const G4int kMuPair = 1;
125 
126 
127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
128 
129 G4BetheHeitler5DModel::G4BetheHeitler5DModel(const G4ParticleDefinition* pd,
130                                              const G4String& nam)
131   : G4PairProductionRelModel(pd, nam),
132     fLepton1(G4Electron::Definition()),fLepton2(G4Positron::Definition()),
133     fTheMuPlus(nullptr),fTheMuMinus(nullptr),
134     fVerbose(1),
135     fConversionType(0),
136     fConvMode(kEPair),
137     iraw(false)
138 {
139   theIonTable = G4IonTable::GetIonTable();
140   //Q: Do we need this on Model
141   SetLowEnergyLimit(2*fTheElectron->GetPDGMass());
142 }
143 
144 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
145 
146 G4BetheHeitler5DModel::~G4BetheHeitler5DModel() = default;
147 
148 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
149 
150 void G4BetheHeitler5DModel::Initialise(const G4ParticleDefinition* part,
151                const G4DataVector& vec)
152 {
153   G4PairProductionRelModel::Initialise(part, vec);
154 
155   G4EmParameters* theManager = G4EmParameters::Instance();
156   // place to initialise model parameters
157   // Verbosity levels: ( Can redefine as needed, but some consideration )
158   // 0 = nothing
159   // > 2 print results
160   // > 3 print rejection warning from transformation (fix bug from gammaray .. )
161   // > 4 print photon direction & polarisation
162   fVerbose = theManager->Verbose();
163   fConversionType = theManager->GetConversionType();
164   //////////////////////////////////////////////////////////////
165   // iraw :
166   //      true  : isolated electron or nucleus.
167   //      false : inside atom -> screening form factor
168   iraw = theManager->OnIsolated();
169   // G4cout << "BH5DModel::Initialise verbose " << fVerbose
170   //   << " isolated " << iraw << " ctype "<< fConversionType << G4endl;
171 
172   //Q: Do we need this on Model
173   // The Leptons defined via SetLeptonPair(..) method
174   SetLowEnergyLimit(2*CLHEP::electron_mass_c2);
175 }
176 
177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
178 
179 void G4BetheHeitler5DModel::SetLeptonPair(const G4ParticleDefinition* p1,
180          const G4ParticleDefinition* p2)
181 {
182   G4int pdg1 = p1->GetPDGEncoding();
183   G4int pdg2 = p2->GetPDGEncoding();
184   G4int pdg = std::abs(pdg1);
185   if ( pdg1 != -pdg2 || (pdg != 11 && pdg != 13) ) {
186     G4ExceptionDescription ed;
187     ed << " Wrong pair of leptons: " << p1->GetParticleName()
188        << " and " << p1->GetParticleName();
189     G4Exception("G4BetheHeitler5DModel::SetLeptonPair","em0007",
190     FatalErrorInArgument, ed, "");
191   } else {
192     if ( pdg == 11 ) {
193       SetConversionMode(kEPair);
194       if( pdg1 == 11 ) {
195   fLepton1 = p1;
196   fLepton2 = p2;
197       } else {
198   fLepton1 = p2;
199   fLepton2 = p1;
200       }
201       if (fVerbose > 0)
202   G4cout << "G4BetheHeitler5DModel::SetLeptonPair conversion to e+ e-"
203          << G4endl;
204     } else {
205       SetConversionMode(kMuPair);
206       if( pdg1 == 13 ) {
207   fLepton1 = p1;
208   fLepton2 = p2;
209       } else {
210   fLepton1 = p2;
211   fLepton2 = p1;
212       }
213       fTheMuPlus = fLepton2;
214       fTheMuMinus= fLepton1;
215       if (fVerbose > 0)
216   G4cout << "G4BetheHeitler5DModel::SetLeptonPair conversion to mu+ mu-"
217          << G4endl;
218     }
219   }
220 }
221 
222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223 
224 G4double G4BetheHeitler5DModel::MaxDiffCrossSection(const G4double* par,
225                                                     G4double Z,
226                                                     G4double e,
227                                                     G4double loge) const
228 {
229   const G4double Q = e/par[9];
230   return par[0] * G4Exp((par[2]+loge*par[4])*loge)
231          / (par[1]+ G4Exp(par[3]*loge)+G4Exp(par[5]*loge))
232          * (1+par[7]*G4Exp(par[8]*G4Log(Z))*Q/(1+Q));
233 }
234 
235 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
236 
237 void
238 G4BetheHeitler5DModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
239                                          const G4MaterialCutsCouple* couple,
240                                          const G4DynamicParticle* aDynamicGamma,
241                                          G4double, G4double)
242 {
243   // MeV
244   static const G4double ElectronMass   = CLHEP::electron_mass_c2;
245 
246   const G4double LeptonMass = fLepton1->GetPDGMass();
247   const G4double LeptonMass2  = LeptonMass*LeptonMass;
248 
249   static const G4double alpha0         = CLHEP::fine_structure_const;
250     // mm
251   static const G4double r0             = CLHEP::classic_electr_radius;
252   // mbarn
253   static const G4double r02            = r0*r0*1.e+25;
254   static const G4double twoPi          = CLHEP::twopi;
255   static const G4double factor         = alpha0 * r02 / (twoPi*twoPi);
256   //  static const G4double factor1        = pow((6.0 * pi),(1.0/3.0))/(8.*alpha0*ElectronMass);
257   static const G4double factor1        = 2.66134007899/(8.*alpha0*ElectronMass);
258   //
259   G4double PairInvMassMin = 2.*LeptonMass;
260   G4double TrThreshold =  2.0 * ( (LeptonMass2)/ElectronMass + LeptonMass);
261 
262   //
263   static const G4double nu[2][10] = {
264     //electron
265     { 0.0227436, 0.0582046, 3.0322675, 2.8275065, -0.0034004,
266       1.1212766, 1.8989468, 68.3492750, 0.0211186, 14.4},
267     //muon
268     {0.67810E-06, 0.86037E+05, 2.0008395, 1.6739719, -0.0057279,
269      1.4222, 0.0, 263230.0, 0.0521, 51.1338}
270   };
271   static const G4double tr[2][10] = {
272     //electron
273     { 0.0332350, 4.3942537, 2.8515925,  2.6351695, -0.0031510,
274       1.5737305, 1.8104647, 20.6434021, -0.0272586, 28.9},
275     //muon
276     {0.10382E-03, 0.14408E+17, 4.1368679, 3.2662121, -0.0163091,
277      0.0000, 0.0, 0.0, 0.0000, 1.0000}
278   };
279   //
280   static const G4double para[2][3][2] = {
281     //electron
282     { {11., -16.},{-1.17, -2.95},{-2., -0.5} },
283     //muon
284     { {17.5, 1.},{-1.17, -2.95},{2., 6.} }
285   };
286   //
287   static const G4double correctionIndex = 1.4;
288   //
289   const G4double GammaEnergy  = aDynamicGamma->GetKineticEnergy();
290   // Protection, Will not be true tot cross section = 0
291   if ( GammaEnergy <= PairInvMassMin) { return; }
292 
293   const G4double GammaEnergy2 = GammaEnergy*GammaEnergy;
294 
295   //////////////////////////////////////////////////////////////
296   const G4ParticleMomentum GammaDirection =
297     aDynamicGamma->GetMomentumDirection();
298   G4ThreeVector GammaPolarization = aDynamicGamma->GetPolarization();
299 
300   // The protection polarization perpendicular to the direction vector,
301   // as it done in G4LivermorePolarizedGammaConversionModel,
302   // assuming Direction is unitary vector
303   //  (projection to plane) p_proj = p - (p o d)/(d o d) x d
304   if ( GammaPolarization.howOrthogonal(GammaDirection) != 0) {
305     GammaPolarization -= GammaPolarization.dot(GammaDirection) * GammaDirection;
306   }
307   // End of Protection
308   //
309   const G4double GammaPolarizationMag = GammaPolarization.mag();
310   
311   //////////////////////////////////////////////////////////////
312   // target element
313   // select randomly one element constituting the material
314   const G4Element* anElement  = SelectTargetAtom(couple, fTheGamma, GammaEnergy,
315                                          aDynamicGamma->GetLogKineticEnergy() );
316   // Atomic number
317   const G4int Z       = anElement->GetZasInt();
318   const G4int A       = SelectIsotopeNumber(anElement);
319   const G4double iZ13 = 1./anElement->GetIonisation()->GetZ3();
320   const G4double targetMass = G4NucleiProperties::GetNuclearMass(A, Z);
321 
322   const G4double NuThreshold =   2.0 * ( (LeptonMass2)/targetMass + LeptonMass);
323   // No conversion possible below nuclear threshold
324   if ( GammaEnergy <= NuThreshold) { return; }
325 
326   CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
327 
328   // itriplet : true -- triplet, false -- nuclear.
329   G4bool itriplet = false;
330   if (fConversionType == 1) {
331     itriplet = false;
332   } else if (fConversionType == 2) {
333     itriplet = true;
334     if ( GammaEnergy <= TrThreshold ) return;
335   } else if ( GammaEnergy > TrThreshold ) {
336     // choose triplet or nuclear from a triplet/nuclear=1/Z
337     // total cross section ratio.
338     // approximate at low energies !
339     if(rndmEngine->flat()*(Z+1) < 1.)  {
340       itriplet = true;
341     }
342   }
343 
344   //
345   const G4double RecoilMass  = itriplet ? ElectronMass : targetMass;
346   const G4double RecoilMass2 = RecoilMass*RecoilMass;
347   const G4double sCMS        = 2.*RecoilMass*GammaEnergy + RecoilMass2;
348   const G4double sCMSPlusRM2 = sCMS + RecoilMass2;
349   const G4double sqrts       = std::sqrt(sCMS);
350   const G4double isqrts2     = 1./(2.*sqrts);
351   //
352   const G4double PairInvMassMax   = sqrts-RecoilMass;
353   const G4double PairInvMassRange = PairInvMassMax/PairInvMassMin;
354   const G4double lnPairInvMassRange = G4Log(PairInvMassRange);
355 
356   // initial state. Defines z axis of "0" frame as along photon propagation.
357   // Since CMS(0., 0., GammaEnergy, GammaEnergy+RecoilMass) set some constants
358   const G4double betaCMS = G4LorentzVector(0.0,0.0,GammaEnergy,GammaEnergy+RecoilMass).beta();
359 
360   // maximum value of pdf
361   const G4double EffectiveZ = iraw ? 0.5 : Z;
362   const G4double Threshold  = itriplet ? TrThreshold : NuThreshold;
363   const G4double AvailableEnergy    = GammaEnergy - Threshold;
364   const G4double LogAvailableEnergy = G4Log(AvailableEnergy);
365   //
366   const G4double MaxDiffCross = itriplet
367     ? MaxDiffCrossSection(tr[fConvMode],
368         EffectiveZ, AvailableEnergy, LogAvailableEnergy)
369     : MaxDiffCrossSection(nu[fConvMode],
370            EffectiveZ, AvailableEnergy, LogAvailableEnergy);
371   //
372   // 50% safety marging factor
373   const G4double ymax = 1.5 * MaxDiffCross;
374   // x1 bounds
375   const G4double xu1 =   (LogAvailableEnergy > para[fConvMode][2][0])
376         ? para[fConvMode][0][0] +
377         para[fConvMode][1][0]*LogAvailableEnergy
378                        : para[fConvMode][0][0] +
379         para[fConvMode][2][0]*para[fConvMode][1][0];
380   const G4double xl1 =   (LogAvailableEnergy > para[fConvMode][2][1])
381                        ? para[fConvMode][0][1] +
382         para[fConvMode][1][1]*LogAvailableEnergy
383                        : para[fConvMode][0][1] +
384         para[fConvMode][2][1]*para[fConvMode][1][1];
385   //
386   G4LorentzVector Recoil;
387   G4LorentzVector LeptonPlus;
388   G4LorentzVector LeptonMinus;
389   G4double pdf    = 0.;
390 
391   G4double rndmv6[6] = {0.0};
392   const G4double corrFac = 1.0/(correctionIndex + 1.0);
393   const G4double expLowLim = -20.;
394   const G4double logLowLim = G4Exp(expLowLim/corrFac);
395   G4double z0, z1, z2, x0, x1;
396   G4double betheheitler, sinTheta, cosTheta, dum0;
397   // START Sampling
398   do {
399 
400     rndmEngine->flatArray(6, rndmv6);
401 
402     //////////////////////////////////////////////////
403     // pdf  pow(x,c) with c = 1.4
404     // integral y = pow(x,(c+1))/(c+1) @ x = 1 =>  y = 1 /(1+c)
405     // invCdf exp( log(y /* *( c + 1.0 )/ (c + 1.0 ) */ ) /( c + 1.0) )
406     //////////////////////////////////////////////////
407 
408     z0 = (rndmv6[0] > logLowLim) ? G4Log(rndmv6[0])*corrFac : expLowLim;  
409     G4double X1 = (z0 > expLowLim) ? G4Exp(z0) : 0.0;
410     z1 = xl1 + (xu1 - xl1)*rndmv6[1];
411     if (z1 > expLowLim) {
412       x0 = G4Exp(z1);
413       dum0 = 1.0/(1.0 + x0);
414       x1 = dum0*x0;
415       cosTheta = -1.0 + 2.0*x1;
416       sinTheta = 2*std::sqrt(x1*(1.0 - x1));
417     } else {
418       x0 = 0.0;
419       dum0 = 1.0;
420       cosTheta = -1.0;
421       sinTheta = 0.0;
422     }
423 
424     z2 = X1*X1*lnPairInvMassRange;
425     const G4double PairInvMass = PairInvMassMin*((z2 > 1.e-3) ? G4Exp(z2) : 1 + z2 + 0.5*z2*z2);
426 
427     // cos and sin theta-lepton
428     const G4double cosThetaLept = std::cos(pi*rndmv6[2]);
429     // sin(ThetaLept) is always in [0,+1] if ThetaLept is in [0,pi]
430     const G4double sinThetaLept = std::sqrt((1.-cosThetaLept)*(1.+cosThetaLept));
431     // cos and sin phi-lepton
432     const G4double cosPhiLept   = std::cos(twoPi*rndmv6[3]-pi);
433     // sin(PhiLept) is in [-1,0] if PhiLept in [-pi,0) and
434     //              is in [0,+1] if PhiLept in [0,+pi]
435     const G4double sinPhiLept   = std::copysign(std::sqrt((1.-cosPhiLept)*(1.+cosPhiLept)),rndmv6[3]-0.5);
436     // cos and sin phi
437     const G4double cosPhi       = std::cos(twoPi*rndmv6[4]-pi);
438     const G4double sinPhi       = std::copysign(std::sqrt((1.-cosPhi)*(1.+cosPhi)),rndmv6[4]-0.5);
439 
440     //////////////////////////////////////////////////
441     // frames:
442     // 3 : the laboratory Lorentz frame, Geant4 axes definition
443     // 0 : the laboratory Lorentz frame, axes along photon direction and polarisation
444     // 1 : the center-of-mass Lorentz frame
445     // 2 : the pair Lorentz frame
446     //////////////////////////////////////////////////
447 
448     // in the center-of-mass frame
449 
450     const G4double RecEnergyCMS  = (sCMSPlusRM2-PairInvMass*PairInvMass)*isqrts2;
451     const G4double LeptonEnergy2 = PairInvMass*0.5;
452 
453     // New way of calucaltion thePRecoil to avoid underflow
454     G4double abp = std::max((2.0*GammaEnergy*RecoilMass -
455            PairInvMass*PairInvMass + 2.0*PairInvMass*RecoilMass)*
456                             (2.0*GammaEnergy*RecoilMass -
457            PairInvMass*PairInvMass - 2.0*PairInvMass*RecoilMass),0.0);
458 
459     G4double thePRecoil = std::sqrt(abp) * isqrts2;
460 
461     // back to the center-of-mass frame
462     Recoil.set( thePRecoil*sinTheta*cosPhi,
463            thePRecoil*sinTheta*sinPhi,
464            thePRecoil*cosTheta,
465            RecEnergyCMS);
466 
467     // in the pair frame
468     const G4double thePLepton    = std::sqrt( (LeptonEnergy2-LeptonMass)
469                                              *(LeptonEnergy2+LeptonMass));
470 
471     LeptonPlus.set(thePLepton*sinThetaLept*cosPhiLept,
472      thePLepton*sinThetaLept*sinPhiLept,
473      thePLepton*cosThetaLept,
474      LeptonEnergy2);
475 
476     LeptonMinus.set(-LeptonPlus.x(),
477      -LeptonPlus.y(),
478      -LeptonPlus.z(),
479      LeptonEnergy2);
480 
481 
482     // Normalisation of final state phase space:
483     // Section 47 of Particle Data Group, Chin. Phys. C, 40, 100001 (2016)
484     //    const G4double Norme = Recoil1.vect().mag() * LeptonPlus2.vect().mag();
485     const G4double Norme = Recoil.vect().mag() * LeptonPlus.vect().mag();
486 
487     // e+, e- to CMS frame from pair frame
488 
489     // boost vector from Pair to CMS
490     const G4ThreeVector pair2cms =
491     G4LorentzVector( -Recoil.x(), -Recoil.y(), -Recoil.z(),
492          sqrts-RecEnergyCMS).boostVector();
493 
494     LeptonPlus.boost(pair2cms);
495     LeptonMinus.boost(pair2cms);
496 
497     // back to the laboratory frame (make use of the CMS(0,0,Eg,Eg+RM)) form
498 
499     Recoil.boostZ(betaCMS);
500     LeptonPlus.boostZ(betaCMS);
501     LeptonMinus.boostZ(betaCMS);
502 
503     // Jacobian factors
504     const G4double Jacob0 = x0*dum0*dum0;
505     const G4double Jacob1 = 2.*X1*lnPairInvMassRange*PairInvMass;
506     const G4double Jacob2 = std::abs(sinThetaLept);
507 
508     // there is no probability to have a lepton with zero momentum
509     // X and Y components of momentum may be zero, in that case SinPhi=1, cosPhi=0
510     const G4double EPlus = LeptonPlus.t();
511     const G4double PPlus = LeptonPlus.vect().mag();
512     const G4double pPX = LeptonPlus.x();
513     const G4double pPY = LeptonPlus.y();
514     const G4double pPZ = LeptonPlus.z();
515     G4double sinPhiPlus = 1.0;
516     G4double cosPhiPlus = 0.0;
517     G4double sinThetaPlus = 0.0;
518     G4double cosThetaPlus = pPZ/PPlus;
519     if (cosThetaPlus < 1.0 && cosThetaPlus > -1.0) {
520       sinThetaPlus = std::sqrt((1.0 - cosThetaPlus)*(1.0 + cosThetaPlus));
521       sinPhiPlus = pPY/(PPlus*sinThetaPlus);
522       cosPhiPlus = pPX/(PPlus*sinThetaPlus);
523     }
524 
525     // denominators:
526     // the two cancelling leading terms for forward emission at high energy, removed
527     const G4double elMassCTP = LeptonMass*cosThetaPlus;
528     const G4double ePlusSTP  = EPlus*sinThetaPlus;
529     const G4double DPlus     = (elMassCTP*elMassCTP + ePlusSTP*ePlusSTP)
530                               /(EPlus + PPlus*cosThetaPlus);
531 
532     // there is no probability to have a lepton with zero momentum
533     // X and Y components of momentum may be zero, in that case SinPhi=0, cosPhi=1
534     const G4double EMinus = LeptonMinus.t();
535     const G4double PMinus = LeptonMinus.vect().mag();
536     const G4double ePX = LeptonMinus.x();
537     const G4double ePY = LeptonMinus.y();
538     const G4double ePZ = LeptonMinus.z();
539     G4double sinPhiMinus = 0.0;
540     G4double cosPhiMinus = 1.0;
541     G4double sinThetaMinus = 0.0;
542     G4double cosThetaMinus = ePZ/PMinus;
543     if (cosThetaMinus < 1.0 && cosThetaMinus > -1.0) {
544       sinThetaMinus = std::sqrt((1.0 - cosThetaMinus)*(1.0 + cosThetaMinus));
545       sinPhiMinus = ePY/(PMinus*sinThetaMinus);
546       cosPhiMinus = ePX/(PMinus*sinThetaMinus);
547     }
548 
549     const G4double elMassCTM = LeptonMass*cosThetaMinus;
550     const G4double eMinSTM   = EMinus*sinThetaMinus;
551     const G4double DMinus    = (elMassCTM*elMassCTM + eMinSTM*eMinSTM)
552                               /(EMinus + PMinus*cosThetaMinus);
553 
554     // cos(phiMinus-PhiPlus)
555     const G4double cosdPhi = cosPhiPlus*cosPhiMinus + sinPhiPlus*sinPhiMinus;
556     const G4double PRec    = Recoil.vect().mag();
557     const G4double q2      = PRec*PRec;
558 
559     const G4double BigPhi  = -LeptonMass2 / (GammaEnergy*GammaEnergy2 * q2*q2);
560 
561     G4double FormFactor = 1.;
562     if (!iraw) {
563       if (itriplet) {
564   const G4double qun = factor1*iZ13*iZ13;
565   const G4double nun = qun * PRec;
566   if (nun < 1.) {
567           FormFactor =  (nun < 0.01) ? (13.8-55.4*std::sqrt(nun))*nun
568                                      : std::sqrt(1-(nun-1)*(nun-1));
569   } // else FormFactor = 1 by default
570       } else {
571         const G4double dum3 = 217.*PRec*iZ13;
572   const G4double AFF  = 1./(1. + dum3*dum3);
573   FormFactor = (1.-AFF)*(1-AFF);
574       }
575     } // else FormFactor = 1 by default
576 
577     if (GammaPolarizationMag==0.) {
578       const G4double pPlusSTP   = PPlus*sinThetaPlus;
579       const G4double pMinusSTM  = PMinus*sinThetaMinus;
580       const G4double pPlusSTPperDP  = pPlusSTP/DPlus;
581       const G4double pMinusSTMperDM = pMinusSTM/DMinus;
582       const G4double dunpol = BigPhi*(
583                   pPlusSTPperDP *pPlusSTPperDP *(4.*EMinus*EMinus-q2)
584                 + pMinusSTMperDM*pMinusSTMperDM*(4.*EPlus*EPlus - q2)
585                 + 2.*pPlusSTPperDP*pMinusSTMperDM*cosdPhi
586                     *(4.*EPlus*EMinus + q2 - 2.*GammaEnergy2)
587                 - 2.*GammaEnergy2*(pPlusSTP*pPlusSTP+pMinusSTM*pMinusSTM)/(DMinus*DPlus));
588       betheheitler = dunpol * factor;
589     } else {
590       const G4double pPlusSTP  = PPlus*sinThetaPlus;
591       const G4double pMinusSTM = PMinus*sinThetaMinus;
592       const G4double pPlusSTPCPPperDP  = pPlusSTP*cosPhiPlus/DPlus;
593       const G4double pMinusSTMCPMperDM = pMinusSTM*cosPhiMinus/DMinus;
594       const G4double caa = 2.*(EPlus*pMinusSTMCPMperDM+EMinus*pPlusSTPCPPperDP);
595       const G4double cbb = pMinusSTMCPMperDM-pPlusSTPCPPperDP;
596       const G4double ccc = (pPlusSTP*pPlusSTP + pMinusSTM*pMinusSTM
597                           +2.*pPlusSTP*pMinusSTM*cosdPhi)/ (DMinus*DPlus);
598       const G4double dtot= 2.*BigPhi*( caa*caa - q2*cbb*cbb - GammaEnergy2*ccc);
599       betheheitler = dtot * factor;
600     }
601     //
602     const G4double cross =  Norme * Jacob0 * Jacob1 * Jacob2 * betheheitler
603                           * FormFactor * RecoilMass / sqrts;
604     pdf = cross * (xu1 - xl1) / G4Exp(correctionIndex*G4Log(X1)); // cond1;
605   } while ( pdf < ymax * rndmv6[5] );
606   // END of Sampling
607   
608   if ( fVerbose > 2 ) {
609     G4double recul = std::sqrt(Recoil.x()*Recoil.x()+Recoil.y()*Recoil.y()
610                               +Recoil.z()*Recoil.z());
611     G4cout << "BetheHeitler5DModel GammaEnergy= " << GammaEnergy
612      << " PDF= " <<  pdf << " ymax= " << ymax
613            << " recul= " << recul << G4endl;
614   }
615 
616   // back to Geant4 system
617 
618   if ( fVerbose > 4 ) {
619     G4cout << "BetheHeitler5DModel GammaDirection " << GammaDirection << G4endl;
620     G4cout << "BetheHeitler5DModel GammaPolarization " << GammaPolarization << G4endl;
621     G4cout << "BetheHeitler5DModel GammaEnergy " << GammaEnergy << G4endl;
622     G4cout << "BetheHeitler5DModel Conv "
623      << (itriplet ? "triplet" : "nucl") << G4endl;
624   }
625 
626   if (GammaPolarizationMag == 0.0) {
627     // set polarization axis orthohonal to direction
628     GammaPolarization = GammaDirection.orthogonal().unit();
629   } else {
630     // GammaPolarization not a unit vector
631     GammaPolarization /= GammaPolarizationMag;
632   }
633 
634   // The unit norm vector that is orthogonal to the two others
635   G4ThreeVector yGrec = GammaDirection.cross(GammaPolarization);
636 
637   // rotation from  gamma ref. sys. to World
638   G4RotationMatrix GtoW(GammaPolarization,yGrec,GammaDirection);
639 
640   Recoil.transform(GtoW);
641   LeptonPlus.transform(GtoW);
642   LeptonMinus.transform(GtoW);
643 
644   if ( fVerbose > 2 ) {
645     G4cout << "BetheHeitler5DModel Recoil " << Recoil.x() << " " << Recoil.y() << " " << Recoil.z()
646      << " " << Recoil.t() << " " << G4endl;
647     G4cout << "BetheHeitler5DModel LeptonPlus " << LeptonPlus.x() << " " << LeptonPlus.y() << " "
648      << LeptonPlus.z() << " " << LeptonPlus.t() << " " << G4endl;
649     G4cout << "BetheHeitler5DModel LeptonMinus " << LeptonMinus.x() << " " << LeptonMinus.y() << " "
650      << LeptonMinus.z() << " " << LeptonMinus.t() << " " << G4endl;
651   }
652 
653   // Create secondaries
654   auto aParticle1 = new G4DynamicParticle(fLepton1,LeptonMinus);
655   auto aParticle2 = new G4DynamicParticle(fLepton2,LeptonPlus);
656 
657   // create G4DynamicParticle object for the particle3 ( recoil )
658   G4ParticleDefinition* RecoilPart;
659   if (itriplet) {
660     // triplet
661     RecoilPart = fTheElectron;
662   } else{
663     RecoilPart = theIonTable->GetIon(Z, A, 0);
664   }
665   auto aParticle3 = new G4DynamicParticle(RecoilPart,Recoil);
666 
667   // Fill output vector
668   fvect->push_back(aParticle1);
669   fvect->push_back(aParticle2);
670   fvect->push_back(aParticle3);
671 
672   // kill incident photon
673   fParticleChange->SetProposedKineticEnergy(0.);
674   fParticleChange->ProposeTrackStatus(fStopAndKill);
675 }
676 
677 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
678