Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // ------------------------------------------------------------------- 27 // 28 // GEANT4 Class header file 29 // 30 // 31 // File name: G4BetheBlochModel 32 // 33 // Author: Vladimir Ivanchenko on base of Laszlo Urban code 34 // 35 // Creation date: 03.01.2002 36 // 37 // Modifications: 38 // 39 // 04-12-02 Fix problem of G4DynamicParticle constructor (V.Ivanchenko) 40 // 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko) 41 // 27-01-03 Make models region aware (V.Ivanchenko) 42 // 13-02-03 Add name (V.Ivanchenko) 43 // 24-03-05 Add G4EmCorrections (V.Ivanchenko) 44 // 11-04-05 Major optimisation of internal interfaces (V.Ivanchenko) 45 // 11-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma) 46 // 12-02-06 move G4LossTableManager::Instance()->EmCorrections() 47 // in constructor (mma) 48 // 12-08-08 Added methods GetParticleCharge, GetChargeSquareRatio, 49 // CorrectionsAlongStep needed for ions(V.Ivanchenko) 50 // 51 // ------------------------------------------------------------------- 52 // 53 54 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 55 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 56 57 #include "G4BetheBlochModel.hh" 58 #include "Randomize.hh" 59 #include "G4PhysicalConstants.hh" 60 #include "G4SystemOfUnits.hh" 61 #include "G4NistManager.hh" 62 #include "G4Electron.hh" 63 #include "G4LossTableManager.hh" 64 #include "G4EmCorrections.hh" 65 #include "G4EmParameters.hh" 66 #include "G4ParticleChangeForLoss.hh" 67 #include "G4ICRU90StoppingData.hh" 68 #include "G4Log.hh" 69 #include "G4DeltaAngle.hh" 70 #include <vector> 71 72 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 73 74 G4BetheBlochModel::G4BetheBlochModel(const G4ParticleDefinition*, 75 const G4String& nam) 76 : G4VEmModel(nam), 77 twoln10(2.0*G4Log(10.0)), 78 fAlphaTlimit(1*CLHEP::GeV), 79 fProtonTlimit(10*CLHEP::GeV) 80 { 81 theElectron = G4Electron::Electron(); 82 corr = G4LossTableManager::Instance()->EmCorrections(); 83 nist = G4NistManager::Instance(); 84 SetLowEnergyLimit(2.0*CLHEP::MeV); 85 } 86 87 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 88 89 G4BetheBlochModel::~G4BetheBlochModel() = default; 90 91 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 92 93 void G4BetheBlochModel::Initialise(const G4ParticleDefinition* p, 94 const G4DataVector&) 95 { 96 if(p != particle) { SetupParameters(p); } 97 98 // always false before the run 99 SetDeexcitationFlag(false); 100 101 // initialisation once 102 if(nullptr == fParticleChange) { 103 const G4String& pname = particle->GetParticleName(); 104 if(G4EmParameters::Instance()->UseICRU90Data() && 105 (pname == "proton" || pname == "GenericIon" || pname == "alpha")) { 106 fICRU90 = nist->GetICRU90StoppingData(); 107 } 108 if (pname == "GenericIon") { 109 isIon = true; 110 } else if (pname == "alpha") { 111 isAlpha = true; 112 } else if (particle->GetPDGCharge() > 1.1*CLHEP::eplus) { 113 isIon = true; 114 } 115 116 fParticleChange = GetParticleChangeForLoss(); 117 if(UseAngularGeneratorFlag() && nullptr == GetAngularDistribution()) { 118 SetAngularDistribution(new G4DeltaAngle()); 119 } 120 } 121 // initialisation for each new run 122 if(IsMaster() && nullptr != fICRU90) { 123 fICRU90->Initialise(); 124 } 125 } 126 127 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 128 129 G4double G4BetheBlochModel::GetChargeSquareRatio(const G4ParticleDefinition* p, 130 const G4Material* mat, 131 G4double kinEnergy) 132 { 133 // this method is called only for ions, so no check if it is an ion 134 if(isAlpha) { return 1.0; } 135 chargeSquare = corr->EffectiveChargeSquareRatio(p, mat, kinEnergy); 136 return chargeSquare; 137 } 138 139 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 140 141 G4double G4BetheBlochModel::GetParticleCharge(const G4ParticleDefinition* p, 142 const G4Material* mat, 143 G4double kineticEnergy) 144 { 145 // this method is called only for ions, so no check if it is an ion 146 return corr->GetParticleCharge(p, mat, kineticEnergy); 147 } 148 149 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 150 151 void G4BetheBlochModel::SetupParameters(const G4ParticleDefinition* p) 152 { 153 particle = p; 154 mass = particle->GetPDGMass(); 155 spin = particle->GetPDGSpin(); 156 G4double q = particle->GetPDGCharge()*inveplus; 157 chargeSquare = q*q; 158 ratio = electron_mass_c2/mass; 159 constexpr G4double aMag = 1./(0.5*eplus*CLHEP::hbar_Planck*CLHEP::c_squared); 160 G4double magmom = particle->GetPDGMagneticMoment()*mass*aMag; 161 magMoment2 = magmom*magmom - 1.0; 162 formfact = 0.0; 163 tlimit = DBL_MAX; 164 if(particle->GetLeptonNumber() == 0) { 165 G4double x = 0.8426*CLHEP::GeV; 166 if(spin == 0.0 && mass < CLHEP::GeV) { x = 0.736*CLHEP::GeV; } 167 else if (mass > CLHEP::GeV) { 168 G4int iz = G4lrint(std::abs(q)); 169 if(iz > 1) { x /= nist->GetA27(iz); } 170 } 171 formfact = 2.0*CLHEP::electron_mass_c2/(x*x); 172 tlimit = 2.0/formfact; 173 } 174 } 175 176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 177 178 G4double G4BetheBlochModel::MinEnergyCut(const G4ParticleDefinition*, 179 const G4MaterialCutsCouple* couple) 180 { 181 return couple->GetMaterial()->GetIonisation()->GetMeanExcitationEnergy(); 182 } 183 184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 185 186 G4double 187 G4BetheBlochModel::ComputeCrossSectionPerElectron(const G4ParticleDefinition* p, 188 G4double kineticEnergy, 189 G4double cut, 190 G4double maxKinEnergy) 191 { 192 G4double cross = 0.0; 193 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 194 const G4double cutEnergy = std::min(std::min(cut,tmax), tlimit); 195 const G4double maxEnergy = std::min(tmax, maxKinEnergy); 196 if(cutEnergy < maxEnergy) { 197 198 G4double totEnergy = kineticEnergy + mass; 199 G4double energy2 = totEnergy*totEnergy; 200 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2; 201 202 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy) 203 - beta2*G4Log(maxEnergy/cutEnergy)/tmax; 204 205 // +term for spin=1/2 particle 206 if( 0.0 < spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; } 207 208 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2; 209 } 210 211 // G4cout << "BB: e= " << kineticEnergy << " tmin= " << cutEnergy 212 // << " tmax= " << tmax << " cross= " << cross << G4endl; 213 214 return cross; 215 } 216 217 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 218 219 G4double G4BetheBlochModel::ComputeCrossSectionPerAtom( 220 const G4ParticleDefinition* p, 221 G4double kinEnergy, 222 G4double Z, G4double, 223 G4double cutEnergy, 224 G4double maxEnergy) 225 { 226 return Z*ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); 227 } 228 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 230 231 G4double G4BetheBlochModel::CrossSectionPerVolume( 232 const G4Material* mat, 233 const G4ParticleDefinition* p, 234 G4double kinEnergy, 235 G4double cutEnergy, 236 G4double maxEnergy) 237 { 238 G4double sigma = mat->GetElectronDensity() 239 *ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,maxEnergy); 240 if(isAlpha) { 241 sigma *= corr->EffectiveChargeSquareRatio(p,mat,kinEnergy)/chargeSquare; 242 } 243 return sigma; 244 } 245 246 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 247 248 G4double G4BetheBlochModel::ComputeDEDXPerVolume(const G4Material* material, 249 const G4ParticleDefinition* p, 250 G4double kineticEnergy, 251 G4double cut) 252 { 253 const G4double tmax = MaxSecondaryEnergy(p, kineticEnergy); 254 // projectile formfactor limit energy loss 255 const G4double cutEnergy = std::min(std::min(cut,tmax), tlimit); 256 257 G4double tau = kineticEnergy/mass; 258 G4double gam = tau + 1.0; 259 G4double bg2 = tau * (tau+2.0); 260 G4double beta2 = bg2/(gam*gam); 261 G4double xc = cutEnergy/tmax; 262 263 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 264 G4double eexc2 = eexc*eexc; 265 266 G4double eDensity = material->GetElectronDensity(); 267 268 // added ICRU90 stopping data for limited list of materials 269 /* 270 G4cout << "### DEDX ICRI90:" << (nullptr != fICRU90) 271 << " Ekin=" << kineticEnergy 272 << " " << p->GetParticleName() 273 << " q2=" << chargeSquare 274 << " inside " << material->GetName() << G4endl; 275 */ 276 if(nullptr != fICRU90 && kineticEnergy < fProtonTlimit) { 277 if(material != currentMaterial) { 278 currentMaterial = material; 279 baseMaterial = material->GetBaseMaterial() 280 ? material->GetBaseMaterial() : material; 281 iICRU90 = fICRU90->GetIndex(baseMaterial); 282 } 283 if(iICRU90 >= 0) { 284 G4double dedx = 0.0; 285 // only for alpha 286 if(isAlpha) { 287 if(kineticEnergy <= fAlphaTlimit) { 288 dedx = fICRU90->GetElectronicDEDXforAlpha(iICRU90, kineticEnergy); 289 } else { 290 const G4double e = kineticEnergy*CLHEP::proton_mass_c2/mass; 291 dedx = fICRU90->GetElectronicDEDXforProton(iICRU90, e)*chargeSquare; 292 } 293 } else { 294 dedx = fICRU90->GetElectronicDEDXforProton(iICRU90, kineticEnergy) 295 *chargeSquare; 296 } 297 dedx *= material->GetDensity(); 298 if(cutEnergy < tmax) { 299 dedx += (G4Log(xc) + (1.0 - xc)*beta2)*CLHEP::twopi_mc2_rcl2 300 *(eDensity*chargeSquare/beta2); 301 } 302 //G4cout << " iICRU90=" << iICRU90 << " dedx=" << dedx << G4endl; 303 if(dedx > 0.0) { return dedx; } 304 } 305 } 306 // general Bethe-Bloch formula 307 G4double dedx = G4Log(2.0*CLHEP::electron_mass_c2*bg2*cutEnergy/eexc2) 308 - (1.0 + xc)*beta2; 309 310 if(0.0 < spin) { 311 G4double del = 0.5*cutEnergy/(kineticEnergy + mass); 312 dedx += del*del; 313 } 314 315 // density correction 316 G4double x = G4Log(bg2)/twoln10; 317 dedx -= material->GetIonisation()->DensityCorrection(x); 318 319 // shell correction 320 dedx -= 2.0*corr->ShellCorrection(p,material,kineticEnergy); 321 322 // now compute the total ionization loss 323 dedx *= CLHEP::twopi_mc2_rcl2*chargeSquare*eDensity/beta2; 324 325 //High order correction different for hadrons and ions 326 if(isIon) { 327 dedx += corr->IonBarkasCorrection(p,material,kineticEnergy); 328 } else { 329 dedx += corr->HighOrderCorrections(p,material,kineticEnergy,cutEnergy); 330 } 331 332 dedx = std::max(dedx, 0.0); 333 /* 334 G4cout << "E(MeV)= " << kineticEnergy/CLHEP::MeV << " dedx= " << dedx 335 << " " << material->GetName() << G4endl; 336 */ 337 return dedx; 338 } 339 340 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 341 342 void G4BetheBlochModel::CorrectionsAlongStep(const G4MaterialCutsCouple* couple, 343 const G4DynamicParticle* dp, 344 const G4double& /*length*/, 345 G4double& eloss) 346 { 347 // no correction for alpha 348 if(isAlpha) { return; } 349 350 // no correction at the last step or at small step 351 const G4double preKinEnergy = dp->GetKineticEnergy(); 352 if(eloss >= preKinEnergy || eloss < preKinEnergy*0.05) { return; } 353 354 // corrections for all charged particles with Q > 1 355 const G4ParticleDefinition* p = dp->GetDefinition(); 356 if(p != particle) { SetupParameters(p); } 357 if(!isIon) { return; } 358 359 // effective energy and charge at a step 360 const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5); 361 const G4Material* mat = couple->GetMaterial(); 362 const G4double q20 = corr->EffectiveChargeSquareRatio(p, mat, preKinEnergy); 363 const G4double q2 = corr->EffectiveChargeSquareRatio(p, mat, e); 364 const G4double qfactor = q2/q20; 365 366 /* 367 G4cout << "G4BetheBlochModel::CorrectionsAlongStep: Epre(MeV)=" 368 << preKinEnergy << " Eeff(MeV)=" << e 369 << " eloss=" << eloss << " elossnew=" << eloss*qfactor 370 << " qfactor=" << qfactor << " Qpre=" << q20 371 << p->GetParticleName() <<G4endl; 372 */ 373 eloss *= qfactor; 374 } 375 376 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 377 378 void G4BetheBlochModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp, 379 const G4MaterialCutsCouple* couple, 380 const G4DynamicParticle* dp, 381 G4double cut, 382 G4double maxEnergy) 383 { 384 G4double kinEnergy = dp->GetKineticEnergy(); 385 const G4double tmax = MaxSecondaryEnergy(dp->GetDefinition(), kinEnergy); 386 const G4double minKinEnergy = std::min(cut, tmax); 387 const G4double maxKinEnergy = std::min(maxEnergy, tmax); 388 if(minKinEnergy >= maxKinEnergy) { return; } 389 390 //G4cout << "G4BetheBlochModel::SampleSecondaries Emin= " << minKinEnergy 391 // << " Emax= " << maxKinEnergy << G4endl; 392 393 const G4double totEnergy = kinEnergy + mass; 394 const G4double etot2 = totEnergy*totEnergy; 395 const G4double beta2 = kinEnergy*(kinEnergy + 2.0*mass)/etot2; 396 397 G4double deltaKinEnergy, f; 398 G4double f1 = 0.0; 399 G4double fmax = 1.0; 400 if( 0.0 < spin ) { fmax += 0.5*maxKinEnergy*maxKinEnergy/etot2; } 401 402 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine(); 403 G4double rndm[2]; 404 405 // sampling without nuclear size effect 406 do { 407 rndmEngineMod->flatArray(2, rndm); 408 deltaKinEnergy = minKinEnergy*maxKinEnergy 409 /(minKinEnergy*(1.0 - rndm[0]) + maxKinEnergy*rndm[0]); 410 411 f = 1.0 - beta2*deltaKinEnergy/tmax; 412 if( 0.0 < spin ) { 413 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2; 414 f += f1; 415 } 416 417 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko 418 } while( fmax*rndm[1] > f); 419 420 // projectile formfactor - suppresion of high energy 421 // delta-electron production at high energy 422 423 G4double x = formfact*deltaKinEnergy; 424 if(x > 1.e-6) { 425 426 G4double x1 = 1.0 + x; 427 G4double grej = 1.0/(x1*x1); 428 if( 0.0 < spin ) { 429 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass); 430 grej *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2)); 431 } 432 if(grej > 1.1) { 433 G4cout << "### G4BetheBlochModel WARNING: grej= " << grej 434 << " " << dp->GetDefinition()->GetParticleName() 435 << " Ekin(MeV)= " << kinEnergy 436 << " delEkin(MeV)= " << deltaKinEnergy 437 << G4endl; 438 } 439 if(rndmEngineMod->flat() > grej) { return; } 440 } 441 442 G4ThreeVector deltaDirection; 443 444 if(UseAngularGeneratorFlag()) { 445 const G4Material* mat = couple->GetMaterial(); 446 deltaDirection = 447 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, 448 SelectRandomAtomNumber(mat), 449 mat); 450 } else { 451 452 G4double deltaMomentum = 453 std::sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2)); 454 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) / 455 (deltaMomentum * dp->GetTotalMomentum()); 456 cost = std::min(cost, 1.0); 457 const G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost)); 458 const G4double phi = twopi*rndmEngineMod->flat(); 459 460 deltaDirection.set(sint*std::cos(phi),sint*std::sin(phi), cost) ; 461 deltaDirection.rotateUz(dp->GetMomentumDirection()); 462 } 463 /* 464 G4cout << "### G4BetheBlochModel " 465 << dp->GetDefinition()->GetParticleName() 466 << " Ekin(MeV)= " << kinEnergy 467 << " delEkin(MeV)= " << deltaKinEnergy 468 << " tmin(MeV)= " << minKinEnergy 469 << " tmax(MeV)= " << maxKinEnergy 470 << " dir= " << dp->GetMomentumDirection() 471 << " dirDelta= " << deltaDirection 472 << G4endl; 473 */ 474 // create G4DynamicParticle object for delta ray 475 auto delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy); 476 477 vdp->push_back(delta); 478 479 // Change kinematics of primary particle 480 kinEnergy -= deltaKinEnergy; 481 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum(); 482 finalP = finalP.unit(); 483 484 fParticleChange->SetProposedKineticEnergy(kinEnergy); 485 fParticleChange->SetProposedMomentumDirection(finalP); 486 } 487 488 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 489 490 G4double G4BetheBlochModel::MaxSecondaryEnergy(const G4ParticleDefinition* pd, 491 G4double kinEnergy) 492 { 493 // here particle type is checked for the case, 494 // when this model is shared between particles 495 if(pd != particle) { SetupParameters(pd); } 496 G4double tau = kinEnergy/mass; 497 return 2.0*CLHEP::electron_mass_c2*tau*(tau + 2.) / 498 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio); 499 } 500 501 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 502