Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class header file 30 // 31 // 32 // File name: G4eDPWACoulombScatteringModel 33 // 34 // Author: Mihaly Novak 35 // 36 // Creation date: 02.07.2020 37 // 38 // Modifications: 39 // 40 // Class Description: 41 // 42 // e-/e+ Coulomb scattering model based on numerical Differential Cross Sections 43 // (DCS) obtained by Dirac Partial Wave Analysis (DPWA) and supplied by the 44 // G4eDPWAElasticDCS class. 45 // The model contains the possibility to incorporate the effects of angular 46 // deflections of sub-threshold ionisation intercations when it's described by 47 // the condensed history model. Note, this must be inactivated (by setting the 48 // `isscpcor` input argument of the CTR to false) when ionisation is described 49 // with a classical, event by event based simulation model instead of usign the 50 // condensed history approach (otherwise, the corresponding angular defelctions 51 // will be "double counted"). 52 // 53 // ------------------------------------------------------------------- 54 55 56 57 #ifndef G4eDPWACoulombScatteringModel_h 58 #define G4eDPWACoulombScatteringModel_h 1 59 60 #include "G4VEmModel.hh" 61 #include "globals.hh" 62 63 class G4eDPWAElasticDCS; 64 class G4ParticleChangeForGamma; 65 class G4ParticleDefinition; 66 class G4DataVector; 67 68 class G4eDPWACoulombScatteringModel : public G4VEmModel { 69 70 public: 71 72 /** 73 * Constructor. 74 * 75 * @param[in] ismixed Indicates if the model is for mixed or for pure single 76 * Coulomb scattering. Different type of tables are pre- 77 * pared for sampling polar angle of Coulomb scattering 78 * for mixed and for pure single scattering models: cosine 79 * of the polar scattering angle can be sampled in a 80 * restriced inteval (see mumin input parameter below). 81 * @param[in] isscpcor Indicates if scattering power correction should be used. 82 * Note, scattering power correction accounts the effects 83 * angular deflections due to sub-threshold ionisations 84 * when ionisation is described by using condensed history 85 * model (should be active only in this case). 86 * @param[in] mumin When the model is used for mixed simulation, Coulomb 87 * scatterings, resulting in a minimum t_c polar angular 88 * deflection, modelled explicitly. Therefore, cross 89 * sections are computed, and angular deflections are 90 * sampled ina resricted [\theta_c,\pi] interval. The 91 * minimum of this interval is determined by the mumin 92 * parameter as: 93 * \mu_{min} = \mu(\theta_c)=0.5[1-\cos(\theta_c)] 94 */ 95 G4eDPWACoulombScatteringModel(G4bool ismixed=false, G4bool isscpcor=true, 96 G4double mumin=0.0); 97 98 ~G4eDPWACoulombScatteringModel() override; 99 100 // 101 // Interface methods: 102 103 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 104 105 void InitialiseLocal(const G4ParticleDefinition*, G4VEmModel*) override; 106 107 G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*, G4double ekin, 108 G4double Z, G4double A, G4double prodcut, 109 G4double emax) override; 110 111 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 112 const G4MaterialCutsCouple*, 113 const G4DynamicParticle*, 114 G4double tmin, 115 G4double maxEnergy) override; 116 117 G4double MinPrimaryEnergy(const G4Material*, const G4ParticleDefinition*, 118 G4double) override { return 10.0*CLHEP::eV; } 119 120 void SetTheDCS(G4eDPWAElasticDCS* theDCS) { fTheDCS = theDCS; } 121 122 G4eDPWAElasticDCS* GetTheDCS() { return fTheDCS; } 123 124 125 private: 126 127 // Indicates if the model is mixed: MSC for soft (theta<theta_c), Singe 128 // Scattering(SS) for hard scatterings(theta>theta_c). SS otherwise. 129 // Note, that while the model provides restricted (elastic and transport) 130 // cross sections, it's responsible to handle, i.e. provide final state, 131 // only for the Singe Scattering part in case of a mixed model. 132 G4bool fIsMixedModel; 133 // indicates if scattering power correction should be applied: correction due 134 // to deflection in case of sub-threshold, inelastic interactions -> only in 135 // case of condensed history simulation of inonisation! 136 G4bool fIsScpCorrection; 137 // mu(theta)=0.5[1-cos(theta)]: the model porvides final states \in [fMuMin,1] 138 G4double fMuMin; 139 // the object that provides cross sections and polar angle of scattering 140 G4eDPWAElasticDCS* fTheDCS; 141 // particle change 142 G4ParticleChangeForGamma* fParticleChange; 143 144 }; 145 146 #endif 147