Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/standard/include/G4PairProductionRelModel.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // GEANT4 Class header file
 30 //
 31 //
 32 // File name:     G4PairProductionRelModel
 33 //
 34 // Author:        Andreas Schaelicke
 35 //
 36 // Creation date: 02.04.2009
 37 //
 38 // Modifications:
 39 // 28-05-18 New version with improved screening function approximation, improved
 40 //          LPM function approximation, efficiency, documentation and cleanup. 
 41 //          Corrected call to selecting target atom in the final state sampling. 
 42 //          (M. Novak)
 43 //
 44 // Class Description:
 45 //
 46 // Implementation of gamma conversion to e+e- in the field of a nucleus 
 47 // relativistic approximation
 48 // 
 49 
 50 // -------------------------------------------------------------------
 51 //
 52 
 53 #ifndef G4PairProductionRelModel_h
 54 #define G4PairProductionRelModel_h 1
 55 
 56 #include <CLHEP/Units/PhysicalConstants.h>
 57 
 58 #include "G4VEmModel.hh"
 59 #include "G4Log.hh"
 60 #include <vector>
 61 
 62 class G4ParticleChangeForGamma;
 63 class G4Pow;
 64 
 65 class G4PairProductionRelModel : public G4VEmModel
 66 {
 67 
 68 public:
 69 
 70   explicit G4PairProductionRelModel(const G4ParticleDefinition* p = nullptr, 
 71                                     const G4String& nam = "BetheHeitlerLPM");
 72  
 73   ~G4PairProductionRelModel() override;
 74 
 75   void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
 76 
 77   void InitialiseLocal(const G4ParticleDefinition*, 
 78            G4VEmModel* masterModel) override;
 79 
 80   G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition*,
 81               G4double kinEnergy, 
 82               G4double Z, 
 83               G4double A=0., 
 84               G4double cut=0.,
 85               G4double emax=DBL_MAX) override;
 86 
 87   void SampleSecondaries(std::vector<G4DynamicParticle*>*,
 88        const G4MaterialCutsCouple*,
 89        const G4DynamicParticle*,
 90        G4double tmin,
 91        G4double maxEnergy) override;
 92 
 93   void SetupForMaterial(const G4ParticleDefinition*,
 94       const G4Material*,G4double) override;
 95 
 96   inline void   SetLPMflag(G4bool val) { fIsUseLPMCorrection = val;  }
 97   inline G4bool LPMflag() const        { return fIsUseLPMCorrection; }
 98 
 99   G4PairProductionRelModel & operator=
100   (const G4PairProductionRelModel &right) = delete;
101   G4PairProductionRelModel(const  G4PairProductionRelModel&) = delete;
102 
103 protected:
104 
105   // for evaluating screening related functions
106   inline void ComputePhi12(const G4double delta, 
107          G4double &phi1, G4double &phi2);
108   inline G4double ScreenFunction1(const G4double delta);
109   inline G4double ScreenFunction2(const G4double delta);
110   inline void ScreenFunction12(const G4double delta, 
111              G4double &f1, G4double &f2);
112   // helper methods for cross-section computation under different approximations
113   G4double ComputeParametrizedXSectionPerAtom(G4double gammaEnergy, G4double Z);
114   G4double ComputeXSectionPerAtom(G4double gammaEnergy, G4double Z);
115   G4double ComputeDXSectionPerAtom(G4double eplusEnergy, G4double gammaEnergy, 
116                                    G4double Z);
117   G4double ComputeRelDXSectionPerAtom(G4double eplusEnergy, 
118               G4double gammaEnergy, G4double Z);
119 
120 private:
121 
122   // for creating some data structure per Z 
123   void InitialiseElementData();
124   struct ElementData {
125     G4double  fLogZ13;
126     G4double  fCoulomb;
127     G4double  fLradEl;
128     G4double  fDeltaFactor;
129     G4double  fDeltaMaxLow;
130     G4double  fDeltaMaxHigh;
131     G4double  fEtaValue;
132     G4double  fLPMVarS1Cond;
133     G4double  fLPMILVarS1Cond;
134   };
135   // for precomputing comp. intensive parts of LPM suppression functions and 
136   // using them at run-time
137   void InitLPMFunctions();
138   void ComputeLPMGsPhis(G4double &funcGS, G4double &funcPhiS, 
139                         const G4double varShat); 
140   void GetLPMFunctions(G4double &lpmGs, G4double &lpmPhis, const G4double sval);
141   void ComputeLPMfunctions(G4double &fXiS, G4double &fGS, G4double &fPhiS, 
142                            const G4double eps, const G4double egamma, 
143                            const G4int izet);
144   struct LPMFuncs {
145     LPMFuncs() : fIsInitialized(false), fISDelta(100.), fSLimit(2.) {}
146     G4bool                 fIsInitialized;
147     G4double               fISDelta;
148     G4double               fSLimit;
149     std::vector<G4double>  fLPMFuncG;
150     std::vector<G4double>  fLPMFuncPhi;
151   };
152 
153 protected:
154   static const G4int                gMaxZet;
155   //
156   static const G4double             gLPMconstant;
157   //
158   static const G4double             gXGL[8]; 
159   static const G4double             gWGL[8];
160   static const G4double             gFelLowZet[8];
161   static const G4double             gFinelLowZet[8];
162   //
163   static const G4double             gXSecFactor;
164   static const G4double             gEgLPMActivation;
165   //  
166   static std::vector<ElementData*>  gElementData;  
167   static LPMFuncs                   gLPMFuncs;
168   // 
169   G4bool isFirstInstance{false};
170   G4bool                            fIsUseLPMCorrection;
171   G4bool                            fIsUseCompleteScreening;
172   //
173   G4double                          fLPMEnergy;
174   //
175   G4double                          fParametrizedXSectionThreshold;
176   G4double                          fCoulombCorrectionThreshold;
177   //
178   G4Pow*                            fG4Calc;
179   G4ParticleDefinition*             fTheGamma;
180   G4ParticleDefinition*             fTheElectron;
181   G4ParticleDefinition*             fThePositron;
182   G4ParticleChangeForGamma*         fParticleChange;
183 };
184 //
185 // Bethe screening functions for the elastic (coherent) scattering:
186 // Bethe's phi1, phi2 coherent screening functions were computed numerically 
187 // by using (the universal) atomic form factors computed based on the Thomas-
188 // Fermi model of the atom (using numerical solution of the Thomas-Fermi 
189 // screening function instead of Moliere's analytical approximation). The 
190 // numerical results can be well approximated (better than Butcher & Messel 
191 // especially near the delta=1 limit) by:
192 // ## if delta <= 1.4 
193 //  phi1(delta) = 20.806 - delta*(3.190 - 0.5710*delta)   
194 //  phi2(delta) = 20.234 - delta*(2.126 - 0.0903*delta)
195 // ## if delta  > 1.4
196 //  phi1(delta) = phi2(delta) = 21.0190 - 4.145*ln(delta + 0.958)
197 // with delta = 136mc^2kZ^{-1/3}/[E(Eg-E)] = 136Z^{-1/3}eps0/[eps(1-eps)] where 
198 // Eg is the initial photon energy, E is the total energy transferred to one of 
199 // the e-/e+ pair, eps0 = mc^2/Eg and eps = E/Eg.
200 
201 inline void G4PairProductionRelModel::ComputePhi12(const G4double delta,
202                G4double &phi1, 
203                G4double &phi2)
204 {
205     if (delta > 1.4) {
206       phi1 = 21.0190 - 4.145*G4Log(delta + 0.958);
207       phi2 = phi1;
208     } else {
209       phi1 = 20.806 - delta*(3.190 - 0.5710*delta);
210       phi2 = 20.234 - delta*(2.126 - 0.0903*delta);
211     }
212 }
213 
214 // Compute the value of the screening function 3*PHI1(delta) - PHI2(delta):
215 inline G4double G4PairProductionRelModel::ScreenFunction1(const G4double delta)
216 {
217   return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958) 
218                        : 42.184 - delta*(7.444 - 1.623*delta);
219 }
220 
221 // Compute the value of the screening function 1.5*PHI1(delta) +0.5*PHI2(delta):
222 inline G4double G4PairProductionRelModel::ScreenFunction2(const G4double delta)
223 {
224   return (delta > 1.4) ? 42.038 - 8.29*G4Log(delta + 0.958)
225                        : 41.326 - delta*(5.848 - 0.902*delta);
226 }
227 
228 // Same as ScreenFunction1 and ScreenFunction2 but computes them at once
229 inline void G4PairProductionRelModel::ScreenFunction12(const G4double delta, 
230                                                      G4double &f1, G4double &f2)
231 {
232   if (delta > 1.4) {
233     f1 = 42.038 - 8.29*G4Log(delta + 0.958);
234     f2 = f1;
235   } else {
236     f1 = 42.184 - delta*(7.444 - 1.623*delta);
237     f2 = 41.326 - delta*(5.848 - 0.902*delta); 
238   }
239 }
240 
241 #endif
242