Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4ecpssrBaseKxsModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 
 27 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 28 
 29 #include <cmath>
 30 #include <iostream>
 31 #include "G4ecpssrBaseKxsModel.hh"
 32 #include "globals.hh"
 33 #include "G4PhysicalConstants.hh"
 34 #include "G4SystemOfUnits.hh"
 35 #include "G4AtomicTransitionManager.hh"
 36 #include "G4NistManager.hh"
 37 #include "G4Proton.hh"
 38 #include "G4Alpha.hh"
 39 #include "G4SemiLogInterpolation.hh"
 40 #include "G4Exp.hh"
 41 
 42 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 43 
 44 G4ecpssrBaseKxsModel::G4ecpssrBaseKxsModel()
 45 {
 46     verboseLevel=0;
 47 
 48     // Storing C coefficients for high velocity formula
 49     G4String fileC1("pixe/uf/c1");
 50     tableC1 = new G4CrossSectionDataSet(new G4SemiLogInterpolation, 1.,1.);
 51 
 52     G4String fileC2("pixe/uf/c2");
 53     tableC2 = new G4CrossSectionDataSet(new G4SemiLogInterpolation, 1.,1.);
 54 
 55     G4String fileC3("pixe/uf/c3");
 56     tableC3 = new G4CrossSectionDataSet(new G4SemiLogInterpolation, 1.,1.);
 57 
 58     // Storing FK data needed for medium velocities region
 59     const char* path = G4FindDataDir("G4LEDATA");
 60 
 61     if (!path) {
 62       G4Exception("G4ecpssrBaseKxsModel::G4ecpssrBaseKxsModel()", "em0006", FatalException,"G4LEDATA environment variable not set" );
 63       return;
 64     }
 65 
 66     std::ostringstream fileName;
 67     fileName << path << "/pixe/uf/FK.dat";
 68     std::ifstream FK(fileName.str().c_str());
 69 
 70     if (!FK)
 71       G4Exception("G4ecpssrBaseKxsModel::G4ecpssrBaseKxsModel()", "em0003", FatalException,"error opening FK data file" );
 72 
 73     dummyVec.push_back(0.);
 74 
 75     while(!FK.eof())
 76     {
 77   double x;
 78   double y;
 79 
 80   FK>>x>>y;
 81 
 82   //  Mandatory vector initialization
 83         if (x != dummyVec.back())
 84         {
 85           dummyVec.push_back(x);
 86           aVecMap[x].push_back(-1.);
 87         }
 88 
 89         FK>>FKData[x][y];
 90 
 91         if (y != aVecMap[x].back()) aVecMap[x].push_back(y);
 92 
 93     }
 94 
 95     tableC1->LoadData(fileC1);
 96     tableC2->LoadData(fileC2);
 97     tableC3->LoadData(fileC3);
 98 
 99 }
100 
101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
102 
103 void print (G4double elem)
104 {
105   G4cout << elem << " ";
106 }
107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108 
109 G4ecpssrBaseKxsModel::~G4ecpssrBaseKxsModel()
110 {
111   delete tableC1;
112   delete tableC2;
113   delete tableC3;
114 }
115 
116 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
117 
118 G4double G4ecpssrBaseKxsModel::ExpIntFunction(G4int n,G4double x)
119 
120 {
121 // this "ExpIntFunction" function allows fast evaluation of the n order exponential integral function En(x)
122   G4int i;
123   G4int ii;
124   G4int nm1;
125   G4double a;
126   G4double b;
127   G4double c;
128   G4double d;
129   G4double del;
130   G4double fact;
131   G4double h;
132   G4double psi;
133   G4double ans = 0;
134   const G4double euler= 0.5772156649;
135   const G4int maxit= 100;
136   const G4double fpmin = 1.0e-30;
137   const G4double eps = 1.0e-7;
138   nm1=n-1;
139   if (n<0 || x<0.0 || (x==0.0 && (n==0 || n==1))) {
140     G4cout << "*** WARNING in G4ecpssrBaseKxsModel::ExpIntFunction: bad arguments in ExpIntFunction" << G4endl;
141     G4cout << n << ", " << x << G4endl;
142   }
143   else {
144        if (n==0) ans=G4Exp(-x)/x;
145         else {
146            if (x==0.0) ans=1.0/nm1;
147               else {
148                    if (x > 1.0) {
149                           b=x+n;
150                           c=1.0/fpmin;
151                           d=1.0/b;
152         h=d;
153         for (i=1;i<=maxit;i++) {
154           a=-i*(nm1+i);
155           b +=2.0;
156           d=1.0/(a*d+b);
157           c=b+a/c;
158           del=c*d;
159           h *=del;
160               if (std::fabs(del-1.0) < eps) {
161           ans=h*G4Exp(-x);
162           return ans;
163               }
164         }
165        } else {
166          ans = (nm1!=0 ? 1.0/nm1 : -std::log(x)-euler);
167          fact=1.0;
168          for (i=1;i<=maxit;i++) {
169            fact *=-x/i;
170            if (i !=nm1) del = -fact/(i-nm1);
171            else {
172        psi = -euler;
173        for (ii=1;ii<=nm1;ii++) psi +=1.0/ii;
174        del=fact*(-std::log(x)+psi);
175            }
176            ans += del;
177            if (std::fabs(del) < std::fabs(ans)*eps) return ans;
178          }
179        }
180         }
181   }
182   }
183 return ans;
184 }
185 
186 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
187 
188 G4double G4ecpssrBaseKxsModel::CalculateCrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
189 
190 {
191   // this K-CrossSection calculation method is done according to W.Brandt and G.Lapicki, Phys.Rev.A23(1981)//
192   G4NistManager* massManager = G4NistManager::Instance();
193 
194   G4AtomicTransitionManager*  transitionManager =  G4AtomicTransitionManager::Instance();
195 
196   G4double  zIncident = 0;
197   G4Proton* aProtone = G4Proton::Proton();
198   G4Alpha* aAlpha = G4Alpha::Alpha();
199 
200   if (massIncident == aProtone->GetPDGMass() )
201   {
202    zIncident = (aProtone->GetPDGCharge())/eplus;
203   }
204   else
205     {
206       if (massIncident == aAlpha->GetPDGMass())
207   {
208     zIncident  = (aAlpha->GetPDGCharge())/eplus;
209   }
210       else
211   {
212     G4cout << "*** WARNING in G4ecpssrBaseKxsModel::CalculateCrossSection : we can treat only Proton or Alpha incident particles " << G4endl;
213     return 0;
214   }
215   }
216 
217     if (verboseLevel>0) G4cout << "  massIncident=" << massIncident<< G4endl;
218 
219   G4double kBindingEnergy = transitionManager->Shell(zTarget,0)->BindingEnergy();
220 
221     if (verboseLevel>0) G4cout << "  kBindingEnergy=" << kBindingEnergy/eV<< G4endl;
222 
223   G4double massTarget = (massManager->GetAtomicMassAmu(zTarget))*amu_c2;
224 
225     if (verboseLevel>0) G4cout << "  massTarget=" <<  massTarget<< G4endl;
226 
227   G4double systemMass =((massIncident*massTarget)/(massIncident+massTarget))/electron_mass_c2; //the mass of the system (projectile, target)
228 
229     if (verboseLevel>0) G4cout << "  systemMass=" <<  systemMass<< G4endl;
230 
231   constexpr G4double zkshell= 0.3;
232   // *** see Brandt, Phys Rev A23, p 1727
233 
234   G4double screenedzTarget = zTarget-zkshell; // screenedzTarget is the screened nuclear charge of the target
235   // *** see Brandt, Phys Rev A23, p 1727
236 
237   constexpr G4double rydbergMeV= 13.6056923e-6;
238 
239   G4double tetaK = kBindingEnergy/((screenedzTarget*screenedzTarget)*rydbergMeV);  //tetaK denotes the reduced binding energy of the electron
240   // *** see Rice, ADANDT 20, p 504, f 2
241 
242     if (verboseLevel>0) G4cout << "  tetaK=" <<  tetaK<< G4endl;
243 
244   G4double velocity =(2./(tetaK*screenedzTarget))*std::pow(((energyIncident*electron_mass_c2)/(massIncident*rydbergMeV)),0.5);
245   // *** also called xiK
246   // *** see Brandt, Phys Rev A23, p 1727
247   // *** see Basbas, Phys Rev A17, p 1656, f4
248 
249     if (verboseLevel>0) G4cout << "  velocity=" << velocity<< G4endl;
250 
251   const G4double bohrPow2Barn=(Bohr_radius*Bohr_radius)/barn ;
252 
253     if (verboseLevel>0) G4cout << "  bohrPow2Barn=" <<  bohrPow2Barn<< G4endl;
254 
255   G4double sigma0 = 8.*pi*(zIncident*zIncident)*bohrPow2Barn*std::pow(screenedzTarget,-4.);     //sigma0 is the initial cross section of K shell at stable state
256   // *** see Benka, ADANDT 22, p 220, f2, for protons
257   // *** see Basbas, Phys Rev A7, p 1000
258 
259   if (verboseLevel>0) G4cout << "  sigma0=" <<  sigma0<< G4endl;
260 
261   const G4double kAnalyticalApproximation= 1.5;
262   G4double x = kAnalyticalApproximation/velocity;
263   // *** see Brandt, Phys Rev A23, p 1727
264   // *** see Brandt, Phys Rev A20, p 469, f16 in expression of h
265 
266     if (verboseLevel>0) G4cout << "  x=" << x<< G4endl;
267 
268   G4double electrIonizationEnergy;
269   // *** see Basbas, Phys Rev A17, p1665, f27
270   // *** see Brandt, Phys Rev A20, p469
271   // *** see Liu, Comp Phys Comm 97, p325, f A5
272 
273   if ((0.< x) && (x <= 0.035))
274     {
275       electrIonizationEnergy= 0.75*pi*(std::log(1./(x*x))-1.);
276     }
277   else
278     {
279       if ( (0.035 < x) && (x <=3.))
280   {
281     electrIonizationEnergy =G4Exp(-2.*x)/(0.031+(0.213*std::pow(x,0.5))+(0.005*x)-(0.069*std::pow(x,3./2.))+(0.324*x*x));
282   }
283 
284       else
285   {
286     if ( (3.< x) && (x<=11.))
287      {
288        electrIonizationEnergy =2.*G4Exp(-2.*x)/std::pow(x,1.6);
289      }
290 
291     else electrIonizationEnergy =0.;
292   }
293     }
294 
295     if (verboseLevel>0) G4cout << "  electrIonizationEnergy=" << electrIonizationEnergy<< G4endl;
296 
297   G4double hFunction =(electrIonizationEnergy*2.)/(tetaK*std::pow(velocity,3)); //hFunction represents the correction for polarization effet
298   // *** see Brandt, Phys Rev A20, p 469, f16
299 
300     if (verboseLevel>0) G4cout << "  hFunction=" << hFunction<< G4endl;
301 
302   G4double gFunction = (1.+(9.*velocity)+(31.*velocity*velocity)+(98.*std::pow(velocity,3.))+(12.*std::pow(velocity,4.))+(25.*std::pow(velocity,5.))
303       +(4.2*std::pow(velocity,6.))+(0.515*std::pow(velocity,7.)))/std::pow(1.+velocity,9.); //gFunction represents the correction for binding effet
304   // *** see Brandt, Phys Rev A20, p 469, f19
305 
306     if (verboseLevel>0) G4cout << "  gFunction=" << gFunction<< G4endl;
307 
308   //-----------------------------------------------------------------------------------------------------------------------------
309 
310   G4double sigmaPSS = 1.+(((2.*zIncident)/(screenedzTarget*tetaK))*(gFunction-hFunction)); //describes the perturbed stationnairy state of the affected atomic electon
311   // *** also called dzeta
312   // *** also called epsilon
313   // *** see Basbas, Phys Rev A17, p1667, f45
314 
315     if (verboseLevel>0) G4cout << "  sigmaPSS=" << sigmaPSS<< G4endl;
316 
317     if (verboseLevel>0) G4cout << "  sigmaPSS*tetaK=" << sigmaPSS*tetaK<< G4endl;
318 
319   //----------------------------------------------------------------------------------------------------------------------------
320 
321   const G4double cNaturalUnit= 1/fine_structure_const;  // it's the speed of light according to Atomic-Unit-System
322 
323     if (verboseLevel>0) G4cout << "  cNaturalUnit=" << cNaturalUnit<< G4endl;
324 
325   G4double ykFormula=0.4*(screenedzTarget/cNaturalUnit)*(screenedzTarget/cNaturalUnit)/(velocity/sigmaPSS);
326   // *** also called yS
327   // *** see Brandt, Phys Rev A20, p467, f6
328   // *** see Brandt, Phys Rev A23, p1728
329 
330     if (verboseLevel>0) G4cout << "  ykFormula=" << ykFormula<< G4endl;
331 
332   G4double relativityCorrection = std::pow((1.+(1.1*ykFormula*ykFormula)),0.5)+ykFormula;// the relativistic correction parameter
333   // *** also called mRS
334   // *** see Brandt, Phys Rev A20, p467, f6
335 
336     if (verboseLevel>0) G4cout << "  relativityCorrection=" << relativityCorrection<< G4endl;
337 
338   G4double reducedVelocity = velocity*std::pow(relativityCorrection,0.5);  // presents the reduced collision velocity parameter
339   // *** also called xiR
340   // *** see Brandt, Phys Rev A20, p468, f7
341   // *** see Brandt, Phys Rev A23, p1728
342 
343     if (verboseLevel>0) G4cout << "  reducedVelocity=" << reducedVelocity<< G4endl;
344 
345   G4double etaOverTheta2 = (energyIncident*electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget)
346                            /(sigmaPSS*tetaK)/(sigmaPSS*tetaK);
347   // *** see Benka, ADANDT 22, p220, f4 for eta
348   // then we use sigmaPSS*tetaK == epsilon*tetaK
349 
350     if (verboseLevel>0) G4cout << "  etaOverTheta2=" << etaOverTheta2<< G4endl;
351 
352   G4double universalFunction = 0;
353 
354   // low velocity formula
355   // *****************
356    if ( velocity < 1. )
357   // OR
358   //if ( reducedVelocity/sigmaPSS < 1.)
359   // *** see Brandt, Phys Rev A23, p1727
360   // *** reducedVelocity/sigmaPSS is also called xiR/dzeta
361   // *****************
362     {
363       if (verboseLevel>0) G4cout << "  Notice : FK is computed from low velocity formula" << G4endl;
364 
365       universalFunction = (std::pow(2.,9.)/45.)*std::pow(reducedVelocity/sigmaPSS,8.)*std::pow((1.+(1.72*(reducedVelocity/sigmaPSS)*(reducedVelocity/sigmaPSS))),-4.);// is the reduced universal cross section
366       // *** see Brandt, Phys Rev A23, p1728
367 
368       if (verboseLevel>0) G4cout << "  universalFunction by Brandt 1981 =" << universalFunction<< G4endl;
369 
370     }
371   else
372   {
373 
374     if ( etaOverTheta2 > 86.6 && (sigmaPSS*tetaK) > 0.4 && (sigmaPSS*tetaK) < 2.9996 )
375     {
376       // High and medium energies. Method from Rice ADANDT 20, p506, 1977 on tables from Benka 1978
377 
378       if (verboseLevel>0) G4cout << "  Notice : FK is computed from high velocity formula" << G4endl;
379 
380       if (verboseLevel>0) G4cout << "  sigmaPSS*tetaK=" << sigmaPSS*tetaK << G4endl;
381 
382       G4double C1= tableC1->FindValue(sigmaPSS*tetaK);
383       G4double C2= tableC2->FindValue(sigmaPSS*tetaK);
384       G4double C3= tableC3->FindValue(sigmaPSS*tetaK);
385 
386         if (verboseLevel>0) G4cout << "  C1=" << C1 << G4endl;
387         if (verboseLevel>0) G4cout << "  C2=" << C2 << G4endl;
388         if (verboseLevel>0) G4cout << "  C3=" << C3 << G4endl;
389 
390       G4double etaK = (energyIncident*electron_mass_c2)/(massIncident*rydbergMeV*screenedzTarget*screenedzTarget);
391       // *** see Benka, ADANDT 22, p220, f4 for eta
392 
393         if (verboseLevel>0) G4cout << "  etaK=" << etaK << G4endl;
394 
395       G4double etaT = (sigmaPSS*tetaK)*(sigmaPSS*tetaK)*(86.6); // at any theta, the largest tabulated etaOverTheta2 is 86.6
396       // *** see Rice, ADANDT 20, p506
397 
398         if (verboseLevel>0) G4cout << "  etaT=" << etaT << G4endl;
399 
400       G4double fKT = FunctionFK((sigmaPSS*tetaK),86.6)*(etaT/(sigmaPSS*tetaK));
401       // *** see Rice, ADANDT 20, p506
402 
403       if (FunctionFK((sigmaPSS*tetaK),86.6)<=0.)
404   {
405         G4cout <<
406         "*** WARNING in G4ecpssrBaseKxsModel::CalculateCrossSection : unable to interpolate FK function in high velocity region ! ***" << G4endl;
407   return 0;
408   }
409 
410         if (verboseLevel>0) G4cout << "  FunctionFK=" << FunctionFK((sigmaPSS*tetaK),86.6) << G4endl;
411 
412         if (verboseLevel>0) G4cout << "  fKT=" << fKT << G4endl;
413 
414       G4double GK = C2/(4*etaK) + C3/(32*etaK*etaK);
415 
416   if (verboseLevel>0) G4cout << "  GK=" << GK << G4endl;
417 
418       G4double GT = C2/(4*etaT) + C3/(32*etaT*etaT);
419 
420         if (verboseLevel>0) G4cout << "  GT=" << GT << G4endl;
421 
422       G4double DT = fKT - C1*std::log(etaT) + GT;
423 
424         if (verboseLevel>0) G4cout << "  DT=" << DT << G4endl;
425 
426       G4double fKK = C1*std::log(etaK) + DT - GK;
427 
428         if (verboseLevel>0) G4cout << "  fKK=" << fKK << G4endl;
429 
430       G4double universalFunction3= fKK/(etaK/tetaK);
431       // *** see Rice, ADANDT 20, p505, f7
432 
433         if (verboseLevel>0) G4cout << "  universalFunction3=" << universalFunction3 << G4endl;
434 
435       universalFunction=universalFunction3;
436 
437     }
438     else if ( etaOverTheta2 >= 1.e-3 && etaOverTheta2 <= 86.6 && (sigmaPSS*tetaK) >= 0.4 && (sigmaPSS*tetaK) <= 2.9996 )
439     {
440       // From Benka 1978
441 
442       if (verboseLevel>0) G4cout << "  Notice : FK is computed from INTERPOLATED data" << G4endl;
443 
444       G4double universalFunction2 = FunctionFK((sigmaPSS*tetaK),etaOverTheta2);
445 
446       if (universalFunction2<=0)
447       {
448         G4cout <<
449         "*** WARNING : G4ecpssrBaseKxsModel::CalculateCrossSection is unable to interpolate FK function in medium velocity region ! ***" << G4endl;
450   return 0;
451       }
452 
453       if (verboseLevel>0) G4cout << "  universalFunction2=" << universalFunction2 << " for theta=" << sigmaPSS*tetaK << " and etaOverTheta2=" << etaOverTheta2 << G4endl;
454 
455       universalFunction=universalFunction2;
456     }
457 
458   }
459 
460   //----------------------------------------------------------------------------------------------------------------------
461 
462   G4double sigmaPSSR = (sigma0/(sigmaPSS*tetaK))*universalFunction; //sigmaPSSR is the straight-line K-shell ionization cross section
463   // *** see Benka, ADANDT 22, p220, f1
464 
465     if (verboseLevel>0) G4cout << "  sigmaPSSR=" << sigmaPSSR<< G4endl;
466 
467   //-----------------------------------------------------------------------------------------------------------------------
468 
469   G4double pssDeltaK = (4./(systemMass*sigmaPSS*tetaK))*(sigmaPSS/velocity)*(sigmaPSS/velocity);
470   // *** also called dzetaK*deltaK
471   // *** see Brandt, Phys Rev A23, p1727, f B2
472 
473     if (verboseLevel>0) G4cout << "  pssDeltaK=" << pssDeltaK<< G4endl;
474 
475   if (pssDeltaK>1) return 0.;
476 
477   G4double energyLoss = std::pow(1-pssDeltaK,0.5); //energyLoss incorporates the straight-line energy-loss
478   // *** also called zK
479   // *** see Brandt, Phys Rev A23, p1727, after f B2
480 
481     if (verboseLevel>0) G4cout << "  energyLoss=" << energyLoss<< G4endl;
482 
483   G4double energyLossFunction = (std::pow(2.,-9)/8.)*((((9.*energyLoss)-1.)*std::pow(1.+energyLoss,9.))+(((9.*energyLoss)+1.)*std::pow(1.-energyLoss,9.)));//energy loss function
484   // *** also called fs
485   // *** see Brandt, Phys Rev A23, p1718, f7
486 
487     if (verboseLevel>0) G4cout << "  energyLossFunction=" <<  energyLossFunction<< G4endl;
488 
489   //----------------------------------------------------------------------------------------------------------------------------------------------
490 
491   G4double coulombDeflection = (4.*pi*zIncident/systemMass)*std::pow(tetaK*sigmaPSS,-2.)*std::pow(velocity/sigmaPSS,-3.)*(zTarget/screenedzTarget); //incorporates Coulomb deflection parameter
492   // *** see Brandt, Phys Rev A23, p1727, f B3
493 
494     if (verboseLevel>0) G4cout << "  cParameter-short=" << coulombDeflection<< G4endl;
495 
496   G4double cParameter = 2.*coulombDeflection/(energyLoss*(energyLoss+1.));
497   // *** see Brandt, Phys Rev A23, p1727, f B4
498 
499     if (verboseLevel>0) G4cout << "  cParameter-full=" << cParameter<< G4endl;
500 
501   G4double coulombDeflectionFunction = 9.*ExpIntFunction(10,cParameter);                         //this function describes Coulomb-deflection effect
502   // *** see Brandt, Phys Rev A23, p1727
503 
504     if (verboseLevel>0) G4cout << "  ExpIntFunction(10,cParameter) =" << ExpIntFunction(10,cParameter) << G4endl;
505 
506     if (verboseLevel>0) G4cout << "  coulombDeflectionFunction =" << coulombDeflectionFunction << G4endl;
507 
508   //--------------------------------------------------------------------------------------------------------------------------------------------------
509 
510   G4double crossSection =  0;
511 
512   crossSection = energyLossFunction* coulombDeflectionFunction*sigmaPSSR;  //this ECPSSR cross section is estimated at perturbed-stationnairy-state(PSS)
513                                                                            //and it's reduced by the energy-loss(E),the Coulomb deflection(C),
514                                                                            //and the relativity(R) effects
515 
516   //--------------------------------------------------------------------------------------------------------------------------------------------------
517 
518   if (crossSection >= 0) {
519     return crossSection * barn;
520   }
521   else {return 0;}
522 
523 }
524 
525 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
526 
527 G4double G4ecpssrBaseKxsModel::FunctionFK(G4double k, G4double theta)
528 {
529 
530   G4double sigma = 0.;
531   G4double valueT1 = 0;
532   G4double valueT2 = 0;
533   G4double valueE21 = 0;
534   G4double valueE22 = 0;
535   G4double valueE12 = 0;
536   G4double valueE11 = 0;
537   G4double xs11 = 0;
538   G4double xs12 = 0;
539   G4double xs21 = 0;
540   G4double xs22 = 0;
541 
542   // PROTECTION TO ALLOW INTERPOLATION AT MINIMUM AND MAXIMUM EtaK/Theta2 values
543   // (in particular for FK computation at 8.66EXX for high velocity formula)
544 
545   if (
546   theta==8.66e-3 ||
547   theta==8.66e-2 ||
548   theta==8.66e-1 ||
549   theta==8.66e+0 ||
550   theta==8.66e+1
551   ) theta=theta-1e-12;
552 
553   if (
554   theta==1.e-3 ||
555   theta==1.e-2 ||
556   theta==1.e-1 ||
557   theta==1.e+00 ||
558   theta==1.e+01
559   ) theta=theta+1e-12;
560 
561   // END PROTECTION
562 
563   auto t2 = std::upper_bound(dummyVec.begin(),dummyVec.end(), k);
564   auto t1 = t2-1;
565 
566   auto e12 = std::upper_bound(aVecMap[(*t1)].begin(),aVecMap[(*t1)].end(), theta);
567   auto e11 = e12-1;
568 
569   auto e22 = std::upper_bound(aVecMap[(*t2)].begin(),aVecMap[(*t2)].end(), theta);
570   auto e21 = e22-1;
571 
572   valueT1  =*t1;
573   valueT2  =*t2;
574   valueE21 =*e21;
575   valueE22 =*e22;
576   valueE12 =*e12;
577   valueE11 =*e11;
578 
579   xs11 = FKData[valueT1][valueE11];
580   xs12 = FKData[valueT1][valueE12];
581   xs21 = FKData[valueT2][valueE21];
582   xs22 = FKData[valueT2][valueE22];
583 
584   G4double xsProduct = xs11 * xs12 * xs21 * xs22;
585 
586   if (xs11==0 || xs12==0 ||xs21==0 ||xs22==0) return (0.);
587 
588   if (xsProduct != 0.)
589   {
590     sigma = QuadInterpolator(  valueE11, valueE12,
591                  valueE21, valueE22,
592              xs11, xs12,
593              xs21, xs22,
594              valueT1, valueT2,
595              k, theta );
596   }
597 
598   return sigma;
599 }
600 
601 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
602 
603 G4double G4ecpssrBaseKxsModel::LinLogInterpolate(G4double e1,
604                     G4double e2,
605                     G4double e,
606                     G4double xs1,
607                     G4double xs2)
608 {
609   G4double d1 = std::log(xs1);
610   G4double d2 = std::log(xs2);
611   G4double value = G4Exp(d1 + (d2 - d1)*(e - e1)/ (e2 - e1));
612   return value;
613 }
614 
615 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
616 
617 G4double G4ecpssrBaseKxsModel::LogLogInterpolate(G4double e1,
618                     G4double e2,
619                     G4double e,
620                     G4double xs1,
621                     G4double xs2)
622 {
623   G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
624   G4double b = std::log10(xs2) - a*std::log10(e2);
625   G4double sigma = a*std::log10(e) + b;
626   G4double value = (std::pow(10.,sigma));
627   return value;
628 }
629 
630 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
631 
632 G4double G4ecpssrBaseKxsModel::QuadInterpolator(G4double e11, G4double e12,
633                    G4double e21, G4double e22,
634                    G4double xs11, G4double xs12,
635                    G4double xs21, G4double xs22,
636                    G4double t1, G4double t2,
637                    G4double t, G4double e)
638 {
639   // Log-Log
640   G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
641   G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
642   G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
643 
644   return value;
645 }
646