Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4UAtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                            *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // -------------------------------------------------------------------
 28 //
 29 // Geant4 Class file
 30 //  
 31 // Authors: Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 32 //
 33 // Created 22 April 2010 from old G4UAtomicDeexcitation class 
 34 //
 35 // Modified:
 36 // ---------
 37 // 20 Oct 2011  Alf  modified to take into account ECPSSR form Form Factor
 38 // 03 Nov 2011  Alf  Extended Empirical and Form Factor ionisation XS models
 39 //                   out thei ranges with Analytical one.
 40 // 07 Nov 2011  Alf  Restored original ioniation XS for alphas, 
 41 //                   letting scaled ones for other ions.   
 42 // 20 Mar 2012  LP   Register G4PenelopeIonisationCrossSection
 43 //
 44 // -------------------------------------------------------------------
 45 //
 46 // Class description:
 47 // Implementation of atomic deexcitation 
 48 //
 49 // -------------------------------------------------------------------
 50 
 51 #include "G4UAtomicDeexcitation.hh"
 52 #include "G4PhysicalConstants.hh"
 53 #include "G4SystemOfUnits.hh"
 54 #include "Randomize.hh"
 55 #include "G4Gamma.hh"
 56 #include "G4AtomicTransitionManager.hh"
 57 #include "G4FluoTransition.hh"
 58 #include "G4Electron.hh"
 59 #include "G4Positron.hh"
 60 #include "G4Proton.hh"
 61 #include "G4Alpha.hh"
 62 
 63 #include "G4teoCrossSection.hh"
 64 #include "G4empCrossSection.hh"
 65 #include "G4PenelopeIonisationCrossSection.hh"
 66 #include "G4LivermoreIonisationCrossSection.hh"
 67 #include "G4EmCorrections.hh"
 68 #include "G4LossTableManager.hh"
 69 #include "G4EmParameters.hh"
 70 #include "G4Material.hh"
 71 #include "G4AtomicShells.hh"
 72 
 73 using namespace std;
 74 
 75 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 76 
 77 G4UAtomicDeexcitation::G4UAtomicDeexcitation():
 78   G4VAtomDeexcitation("UAtomDeexcitation"),
 79   minGammaEnergy(DBL_MAX), 
 80   minElectronEnergy(DBL_MAX),
 81   newShellId(-1)
 82 {
 83   anaPIXEshellCS = nullptr;
 84   PIXEshellCS    = nullptr;
 85   ePIXEshellCS   = nullptr;
 86   emcorr = G4LossTableManager::Instance()->EmCorrections();
 87   theElectron = G4Electron::Electron();
 88   thePositron = G4Positron::Positron();
 89   transitionManager = G4AtomicTransitionManager::Instance();
 90 }
 91 
 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 93 
 94 G4UAtomicDeexcitation::~G4UAtomicDeexcitation()
 95 {
 96   delete anaPIXEshellCS;
 97   delete PIXEshellCS;
 98   delete ePIXEshellCS;
 99 }
100 
101 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
102 
103 void G4UAtomicDeexcitation::InitialiseForNewRun()
104 {
105   if(!IsFluoActive()) { return; }
106   transitionManager->Initialise();
107   if(!IsPIXEActive()) { return; }
108 
109   if(!anaPIXEshellCS) {
110     anaPIXEshellCS = new G4teoCrossSection("ECPSSR_Analytical");
111   }
112   G4cout << G4endl;
113   G4cout << "### === G4UAtomicDeexcitation::InitialiseForNewRun()" << G4endl;
114 
115   G4EmParameters* param = G4EmParameters::Instance();
116   G4String namePIXExsModel = param->PIXECrossSectionModel();
117   G4String namePIXExsElectronModel = param->PIXEElectronCrossSectionModel();
118 
119   // Check if old cross section for p/ion should be deleted 
120   if(PIXEshellCS && namePIXExsModel != PIXEshellCS->GetName()) 
121     {
122       delete PIXEshellCS;
123       PIXEshellCS = nullptr;
124     }
125 
126   // Instantiate new proton/ion cross section
127   if(!PIXEshellCS) {
128     if (namePIXExsModel == "ECPSSR_FormFactor")
129       {
130   PIXEshellCS = new G4teoCrossSection(namePIXExsModel);
131       }
132     else if(namePIXExsModel == "ECPSSR_ANSTO")
133       {
134   PIXEshellCS = new G4teoCrossSection(namePIXExsModel);
135       }    
136     else if(namePIXExsModel == "Empirical")
137       {
138   PIXEshellCS = new G4empCrossSection(namePIXExsModel);
139       }
140   }
141 
142   // Check if old cross section for e+- should be deleted 
143   if(ePIXEshellCS && namePIXExsElectronModel != ePIXEshellCS->GetName()) 
144     {
145       delete ePIXEshellCS;
146       ePIXEshellCS = nullptr;
147     } 
148 
149   // Instantiate new e+- cross section
150   if(nullptr == ePIXEshellCS) 
151     {
152       if(namePIXExsElectronModel == "Empirical")
153   {
154     ePIXEshellCS = new G4empCrossSection("Empirical");
155   }
156       else if(namePIXExsElectronModel == "ECPSSR_Analytical") 
157   {
158     ePIXEshellCS = new G4teoCrossSection("ECPSSR_Analytical");
159   }
160       else if (namePIXExsElectronModel == "Penelope")
161   {
162     ePIXEshellCS = new G4PenelopeIonisationCrossSection();
163   }
164       else 
165   {
166     ePIXEshellCS = new G4LivermoreIonisationCrossSection();
167   }
168     } 
169 }
170 
171 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
172 
173 void G4UAtomicDeexcitation::InitialiseForExtraAtom(G4int)
174 {}
175 
176 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
177 
178 const G4AtomicShell* 
179 G4UAtomicDeexcitation::GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)
180 {
181   return transitionManager->Shell(Z, (std::size_t)shell);
182 }
183 
184 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
185 
186 void G4UAtomicDeexcitation::GenerateParticles(
187                 std::vector<G4DynamicParticle*>* vectorOfParticles,
188           const G4AtomicShell* atomicShell, 
189           G4int Z,
190           G4double gammaCut,
191           G4double eCut)
192 {
193   // Defined initial conditions
194   G4int givenShellId = atomicShell->ShellId();
195   minGammaEnergy = gammaCut;
196   minElectronEnergy = eCut;
197   vacancyArray.clear();
198   
199   // generation secondaries
200   G4DynamicParticle* aParticle=0;
201   G4int provShellId = 0;
202   
203   //ORIGINAL METHOD BY ALFONSO MANTERO
204   if (!IsAugerCascadeActive())
205     {
206       //----------------------------  
207       G4int counter = 0;
208       
209       // limits of the EPDL data
210       if (Z>5 && Z<105) {
211 
212   // The aim of this loop is to generate more than one fluorecence photon 
213   // from the same ionizing event 
214   do
215     {
216       if (counter == 0) 
217         // First call to GenerateParticles(...):
218         // givenShellId is given by the process
219         {
220     provShellId = SelectTypeOfTransition(Z, givenShellId);
221     
222     if (provShellId >0) 
223       {
224         aParticle =
225           GenerateFluorescence(Z, givenShellId, provShellId);
226       }
227     else if (provShellId == -1)
228       {
229         aParticle = GenerateAuger(Z, givenShellId);
230       }
231         }
232       else 
233         // Following calls to GenerateParticles(...):
234         // newShellId is given by GenerateFluorescence(...)
235         {
236     provShellId = SelectTypeOfTransition(Z,newShellId);
237     if (provShellId >0)
238       {
239         aParticle = GenerateFluorescence(Z,newShellId,provShellId);
240       }
241     else if ( provShellId == -1)
242       {
243         aParticle = GenerateAuger(Z, newShellId);   
244       }
245         }
246       ++counter;
247       if (aParticle != 0) 
248         {
249     vectorOfParticles->push_back(aParticle);
250         }
251       else {provShellId = -2;}
252     }  
253   while (provShellId > -2); 
254       }
255     } // Auger cascade is not active
256 
257   //END OF ORIGINAL METHOD BY ALFONSO MANTERO
258   //----------------------
259 
260   // NEW METHOD
261   // Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727)
262   if (IsAugerCascadeActive())
263     {
264       //----------------------
265       vacancyArray.push_back(givenShellId);
266 
267       // let's check that 5<Z<100
268       if (Z<6 || Z>104){
269   return;
270       }
271 
272       // as long as there is vacancy to be filled by either fluo or auger, stay in the loop.
273       while(!vacancyArray.empty()){
274   //  prepare to process the last element, and then delete it from the vector.
275   givenShellId = vacancyArray[0];
276   provShellId = SelectTypeOfTransition(Z,givenShellId);
277 
278   //G4cout<<"\n------ Atom Transition with Z: "<<Z<<"\tbetween current:"
279   //    <<givenShellId<<" & target:"<<provShellId<<G4endl;
280   if(provShellId>0){
281     aParticle = GenerateFluorescence(Z,givenShellId,provShellId);
282   }
283   else if(provShellId == -1){
284     aParticle = GenerateAuger(Z, givenShellId);
285   }
286   //  if a particle is created, put it in the vector of new particles
287   if(aParticle!=0)
288     vectorOfParticles->push_back(aParticle);
289 
290   //  one vacancy has been processed. Erase it.
291   vacancyArray.erase(vacancyArray.begin());
292       }
293       //----------------------
294       //End of Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727)
295 
296     } // Auger cascade is active
297 }
298 
299 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
300 
301 G4double 
302 G4UAtomicDeexcitation::GetShellIonisationCrossSectionPerAtom(
303            const G4ParticleDefinition* pdef, 
304            G4int Z, 
305            G4AtomicShellEnumerator shellEnum,
306            G4double kineticEnergy,
307            const G4Material* mat)
308 {
309   // we must put a control on the shell that are passed: 
310   // some shells should not pass (line "0" or "2")
311 
312   // check atomic number
313   G4double xsec = 0.0;
314   if(Z > 93 || Z < 6 ) { return xsec; } //corrected by alf - Z<6 missing
315   G4int idx = G4int(shellEnum);
316   if(idx >= G4AtomicShells::GetNumberOfShells(Z)) { return xsec; }
317 
318   if(pdef == theElectron || pdef == thePositron) {
319     xsec = ePIXEshellCS->CrossSection(Z,shellEnum,kineticEnergy,0.0,mat);
320     return xsec;
321   }
322 
323   G4double mass = pdef->GetPDGMass();
324   G4double escaled = kineticEnergy;
325   G4double q2 = 0.0;
326 
327   // scaling to protons for all particles excluding protons and alpha
328   G4int pdg = pdef->GetPDGEncoding();
329   if (pdg != 2212 && pdg != 1000020040)
330     {
331       mass = proton_mass_c2;
332       escaled = kineticEnergy*mass/(pdef->GetPDGMass());
333 
334       if(mat) {
335   q2 = emcorr->EffectiveChargeSquareRatio(pdef,mat,kineticEnergy);
336       } else {
337   G4double q = pdef->GetPDGCharge()/eplus;
338   q2 = q*q;
339       }
340     }
341   
342   if(PIXEshellCS) {
343     xsec = PIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat);
344   }
345   if(xsec < 1e-100) {     
346     xsec = anaPIXEshellCS->CrossSection(Z,shellEnum,escaled,mass,mat); 
347   }
348 
349   if (q2)  {xsec *= q2;}
350 
351   return xsec;
352 }
353 
354 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
355 
356 void G4UAtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
357 {
358   minGammaEnergy = cut;
359 }
360 
361 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
362 
363 void G4UAtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
364 {
365   minElectronEnergy = cut;
366 }
367 
368 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
369 
370 G4double G4UAtomicDeexcitation::ComputeShellIonisationCrossSectionPerAtom(
371         const G4ParticleDefinition* p, 
372         G4int Z, 
373         G4AtomicShellEnumerator shell,
374         G4double kinE,
375         const G4Material* mat)
376 {
377   return GetShellIonisationCrossSectionPerAtom(p,Z,shell,kinE,mat);
378 }
379 
380 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
381 
382 G4int G4UAtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
383 {
384   if (shellId <=0 ) {
385     return 0;
386   }
387   
388   G4int provShellId = -1;
389   G4int shellNum = 0;
390   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
391   
392   const G4FluoTransition* refShell = 
393     transitionManager->ReachableShell(Z,maxNumOfShells-1);
394 
395   // This loop gives shellNum the value of the index of shellId
396   // in the vector storing the list of the shells reachable through
397   // a radiative transition
398   if ( shellId <= refShell->FinalShellId())
399     {
400       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
401   {
402     if(shellNum ==maxNumOfShells-1)
403       {
404         break;
405       }
406     shellNum++;
407   }
408       G4int transProb = 0; //AM change 29/6/07 was 1
409    
410       G4double partialProb = G4UniformRand();      
411       G4double partSum = 0;
412       const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);
413       G4int trSize =  (G4int)(aShell->TransitionProbabilities()).size();
414     
415       // Loop over the shells wich can provide an electron for a 
416       // radiative transition towards shellId:
417       // in every loop the partial sum of the first transProb shells
418       // is calculated and compared with a random number [0,1].
419       // If the partial sum is greater, the shell whose index is transProb
420       // is chosen as the starting shell for a radiative transition
421       // and its identity is returned
422       // Else, terminateded the loop, -1 is returned
423       while(transProb < trSize){
424   partSum += aShell->TransitionProbability(transProb);
425 
426   if(partialProb <= partSum)
427     {
428       provShellId = aShell->OriginatingShellId(transProb);
429       break;
430     }
431   ++transProb;
432       }
433       // here provShellId is the right one or is -1.
434       // if -1, the control is passed to the Auger generation part of the package 
435     }
436   else 
437     {
438       provShellId = -1;
439     }
440   return provShellId;
441 }
442 
443 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
444 
445 G4DynamicParticle* 
446 G4UAtomicDeexcitation::GenerateFluorescence(G4int Z, G4int shellId,
447               G4int provShellId )
448 { 
449   if (shellId <=0 )
450     {
451       return nullptr;
452     }
453 
454   //isotropic angular distribution for the outcoming photon
455   G4double newcosTh = 1.-2.*G4UniformRand();
456   G4double newsinTh = std::sqrt((1.-newcosTh)*(1. + newcosTh));
457   G4double newPhi = twopi*G4UniformRand();
458   
459   G4double xDir = newsinTh*std::sin(newPhi);
460   G4double yDir = newsinTh*std::cos(newPhi);
461   G4double zDir = newcosTh;
462   
463   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
464   
465   G4int shellNum = 0;
466   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
467   
468   // find the index of the shell named shellId
469   while (shellId != transitionManager->
470    ReachableShell(Z,shellNum)->FinalShellId())
471     {
472       if(shellNum == maxNumOfShells-1)
473   {
474     break;
475   }
476       ++shellNum;
477     }
478   // number of shell from wich an electron can reach shellId
479   G4int transitionSize = (G4int)transitionManager->
480     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
481   
482   G4int index = 0;
483   
484   // find the index of the shell named provShellId in the vector
485   // storing the shells from which shellId can be reached 
486   while (provShellId != transitionManager->
487    ReachableShell(Z,shellNum)->OriginatingShellId(index))
488     {
489       if(index ==  transitionSize-1)
490   {
491     break;
492   }
493       ++index;
494     }
495   // energy of the gamma leaving provShellId for shellId
496   G4double transitionEnergy = transitionManager->
497     ReachableShell(Z,shellNum)->TransitionEnergy(index);
498   
499   if (transitionEnergy < minGammaEnergy) return nullptr;
500 
501   // This is the shell where the new vacancy is: it is the same
502   // shell where the electron came from
503   newShellId = transitionManager->
504     ReachableShell(Z,shellNum)->OriginatingShellId(index);
505     
506   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
507                  newGammaDirection,
508                  transitionEnergy);
509 
510   //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727)
511   if (IsAugerCascadeActive()) vacancyArray.push_back(newShellId);
512 
513   return newPart;
514 }
515 
516 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
517 
518 G4DynamicParticle* G4UAtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
519 {
520   if(!IsAugerActive()) { 
521     //    G4cout << "auger inactive!" << G4endl; //debug
522     return nullptr; 
523   }
524   
525   if (shellId <=0 ) {
526     //G4Exception("G4UAtomicDeexcitation::GenerateAuger()","de0002",
527     //    JustWarning, "Energy deposited locally");
528     return nullptr;
529   }
530 
531   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
532   
533   const G4AugerTransition* refAugerTransition = 
534     transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
535 
536   // This loop gives to shellNum the value of the index of shellId
537   // in the vector storing the list of the vacancies in the variuos shells 
538   // that can originate a NON-radiative transition
539   G4int shellNum = 0;
540     
541   if ( shellId <= refAugerTransition->FinalShellId() ) 
542     // "FinalShellId" is final from the point of view of the electron 
543     // who makes the transition, 
544     // being the Id of the shell in which there is a vacancy
545     {
546       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
547       if (shellId != pippo ) {
548   do { 
549     ++shellNum;
550     if(shellNum == maxNumOfShells)
551       {
552         // G4cout << "No Auger transition found" << G4endl; //debug
553         return 0;
554       }
555   }
556   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) );
557       }
558 
559       // Now we have that shellnum is the shellIndex of the shell named ShellId
560       //      G4cout << " the index of the shell is: "<<shellNum<<G4endl;
561       // But we have now to select two shells: one for the transition, 
562       // and another for the auger emission.
563       G4int transitionLoopShellIndex = 0;      
564       G4double partSum = 0;
565       const G4AugerTransition* anAugerTransition = 
566   transitionManager->ReachableAugerShell(Z,shellNum);
567 
568       G4int transitionSize = (G4int)
569   (anAugerTransition->TransitionOriginatingShellIds())->size();
570       while (transitionLoopShellIndex < transitionSize) {
571 
572         std::vector<G4int>::const_iterator pos = 
573     anAugerTransition->TransitionOriginatingShellIds()->cbegin();
574 
575         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
576         G4int numberOfPossibleAuger = (G4int)
577     (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
578         G4int augerIndex = 0;
579       
580   if (augerIndex < numberOfPossibleAuger) {
581     do 
582       {
583         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
584                     transitionLoopShellId);
585         partSum += thisProb;
586         augerIndex++;
587         
588       } while (augerIndex < numberOfPossibleAuger);
589         }
590         ++transitionLoopShellIndex;
591       }
592      
593       G4double totalVacancyAugerProbability = partSum;
594 
595       //And now we start to select the right auger transition and emission
596       G4int transitionRandomShellIndex = 0;
597       G4int transitionRandomShellId = 1;
598       G4int augerIndex = 0;
599       partSum = 0; 
600       G4double partialProb = G4UniformRand();
601       
602       G4int numberOfPossibleAuger = 0;      
603       G4bool foundFlag = false;
604 
605       while (transitionRandomShellIndex < transitionSize) {
606 
607         std::vector<G4int>::const_iterator pos = 
608     anAugerTransition->TransitionOriginatingShellIds()->begin();
609 
610         transitionRandomShellId = *(pos+transitionRandomShellIndex);
611         
612   augerIndex = 0;
613   numberOfPossibleAuger = (G4int)(anAugerTransition-> 
614          AugerTransitionProbabilities(transitionRandomShellId))->size();
615 
616         while (augerIndex < numberOfPossibleAuger) {
617     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
618                      transitionRandomShellId);
619 
620           partSum += thisProb;
621           
622           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
623       foundFlag = true;
624       break;
625     }
626           augerIndex++;
627         }
628         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
629         ++transitionRandomShellIndex;
630       }
631 
632       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
633       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
634       // If no Transition has been found, 0 is returned.  
635       if (!foundFlag) {
636   return nullptr;
637       } 
638       
639       // Isotropic angular distribution for the outcoming e-
640       G4double newcosTh = 1.-2.*G4UniformRand();
641       G4double newsinTh = std::sqrt(1.-newcosTh*newcosTh);
642       G4double newPhi = twopi*G4UniformRand();
643       
644       G4double xDir = newsinTh*std::sin(newPhi);
645       G4double yDir = newsinTh*std::cos(newPhi);
646       G4double zDir = newcosTh;
647       
648       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
649       
650       // energy of the auger electron emitted            
651       G4double transitionEnergy = 
652   anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
653       
654       if (transitionEnergy < minElectronEnergy) {
655   return nullptr;
656       }
657 
658       // This is the shell where the new vacancy is: it is the same
659       // shell where the electron came from
660       newShellId = transitionRandomShellId;
661       
662       //Auger cascade by Burkhant Suerfu on March 24 2015 (Bugzilla 1727)
663       if (IsAugerCascadeActive())
664   {
665     vacancyArray.push_back(newShellId);
666     vacancyArray.push_back(anAugerTransition->AugerOriginatingShellId(augerIndex,transitionRandomShellId));
667   }
668      
669       return new G4DynamicParticle(G4Electron::Electron(), 
670            newElectronDirection,
671            transitionEnergy);
672     }
673   else 
674     {
675       return nullptr;
676     }
677 }
678