Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4PenelopeOscillatorManager.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Authors: Luciano Pandola (luciano.pandola at lngs.infn.it)
 27 //
 28 // History:
 29 // -----------
 30 //
 31 //  03 Dec 2009  First working version, Luciano Pandola
 32 //  16 Feb 2010  Added methods to store also total Z and A for the
 33 //               molecule, Luciano Pandola
 34 //  19 Feb 2010  Scale the Hartree factors in the Compton Oscillator
 35 //               table by (1/fine_structure_const), since the models use
 36 //               always the ratio (hartreeFactor/fine_structure_const)
 37 //  16 Mar 2010  Added methods to calculate and store mean exc energy
 38 //               and plasma energy (used for Ionisation). L Pandola
 39 //  18 Mar 2010  Added method to retrieve number of atoms per
 40 //               molecule. L. Pandola
 41 //  06 Sep 2011  Override the local Penelope database and use the main
 42 //               G4AtomicDeexcitation database to retrieve the shell
 43 //               binding energies. L. Pandola
 44 //  15 Mar 2012  Added method to retrieve number of atom of given Z per
 45 //               molecule. Restore the original Penelope database for levels
 46 //               below 100 eV. L. Pandola
 47 //
 48 // -------------------------------------------------------------------
 49 
 50 #include "G4PenelopeOscillatorManager.hh"
 51 
 52 #include "globals.hh"
 53 #include "G4PhysicalConstants.hh"
 54 #include "G4SystemOfUnits.hh"
 55 #include "G4AtomicTransitionManager.hh"
 56 #include "G4AtomicShell.hh"
 57 #include "G4Material.hh"
 58 #include "G4Exp.hh"
 59 
 60 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 61 
 62 G4ThreadLocal G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::instance = nullptr;
 63 
 64 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 65 
 66 G4PenelopeOscillatorManager::G4PenelopeOscillatorManager() :
 67   fOscillatorStoreIonisation(nullptr),fOscillatorStoreCompton(nullptr),
 68   fAtomicNumber(nullptr),fAtomicMass(nullptr),fExcitationEnergy(nullptr),
 69   fPlasmaSquared(nullptr),fAtomsPerMolecule(nullptr),
 70   fAtomTablePerMolecule(nullptr)
 71 {
 72   fReadElementData = false;
 73   for (G4int i=0;i<5;i++)
 74     {
 75       for (G4int j=0;j<2000;j++)
 76   fElementData[i][j] = 0.;
 77     }
 78   fVerbosityLevel = 0;
 79 }
 80 
 81 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 82 
 83 G4PenelopeOscillatorManager::~G4PenelopeOscillatorManager()
 84 {
 85   Clear();
 86   delete instance;
 87 }
 88 
 89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 90 
 91 G4PenelopeOscillatorManager* G4PenelopeOscillatorManager::GetOscillatorManager()
 92 {
 93   if (!instance)
 94     instance = new G4PenelopeOscillatorManager();
 95   return instance;
 96 }
 97 
 98 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
 99 
100 void G4PenelopeOscillatorManager::Clear()
101 {
102   if (fVerbosityLevel > 1)
103     G4cout << " G4PenelopeOscillatorManager::Clear() - Clean Oscillator Tables" << G4endl;
104 
105   //Clean up OscillatorStoreIonisation
106   for (auto& item : (*fOscillatorStoreIonisation))
107     {
108       G4PenelopeOscillatorTable* table = item.second;
109       if (table)
110   {
111     for (std::size_t k=0;k<table->size();++k) //clean individual oscillators
112       {
113         if ((*table)[k])
114     delete ((*table)[k]);
115       }
116     delete table;
117   }
118     }
119   delete fOscillatorStoreIonisation;
120 
121   //Clean up OscillatorStoreCompton
122   for (auto& item : (*fOscillatorStoreCompton))
123     {
124       G4PenelopeOscillatorTable* table = item.second;
125       if (table)
126   {
127     for (std::size_t k=0;k<table->size();++k) //clean individual oscillators
128       {
129         if ((*table)[k])
130     delete ((*table)[k]);
131       }
132     delete table;
133   }
134     }
135   delete fOscillatorStoreCompton;
136 
137   if (fAtomicMass) delete fAtomicMass;
138   if (fAtomicNumber) delete fAtomicNumber;
139   if (fExcitationEnergy) delete fExcitationEnergy;
140   if (fPlasmaSquared) delete fPlasmaSquared;
141   if (fAtomsPerMolecule) delete fAtomsPerMolecule;
142   if (fAtomTablePerMolecule) delete fAtomTablePerMolecule;
143 }
144 
145 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
146 
147 void G4PenelopeOscillatorManager::Dump(const G4Material* material)
148 {
149   G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material);
150   if (!theTable)
151     {
152       G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
153       G4cout << "Problem in retrieving the Ionisation Oscillator Table for " 
154        << material->GetName() << G4endl;
155       return;
156     }
157   G4cout << "*********************************************************************" << G4endl;
158   G4cout << " Penelope Oscillator Table Ionisation for " << material->GetName() << G4endl;
159   G4cout << "*********************************************************************" << G4endl;
160   G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
161   G4cout << "*********************************************************************" << G4endl;
162   if (theTable->size() < 10)
163     for (std::size_t k=0;k<theTable->size();++k)
164       {
165   G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
166     " Shell Flag = " << (*theTable)[k]->GetShellFlag() <<
167     " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
168   G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
169   G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
170   G4cout << "Resonance energy = " << (*theTable)[k]->GetResonanceEnergy()/eV << " eV" << G4endl;
171   G4cout << "Cufoff resonance energy = " <<
172     (*theTable)[k]->GetCutoffRecoilResonantEnergy()/eV << " eV" << G4endl;
173   G4cout << "*********************************************************************" << G4endl;
174       }
175   for (std::size_t k=0;k<theTable->size();++k)
176     {
177       G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " <<
178   (*theTable)[k]->GetIonisationEnergy()/eV << " " 
179        << (*theTable)[k]->GetResonanceEnergy()/eV << " " <<
180   (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " <<
181   (*theTable)[k]->GetParentShellID() << G4endl;
182     }
183   G4cout << "*********************************************************************" << G4endl;
184 
185   //Compton table
186   theTable = GetOscillatorTableCompton(material);
187   if (!theTable)
188     {
189       G4cout << " G4PenelopeOscillatorManager::Dump " << G4endl;
190       G4cout << "Problem in retrieving the Compton Oscillator Table for " << 
191   material->GetName() << G4endl;
192       return;
193     }
194   G4cout << "*********************************************************************" << G4endl;
195   G4cout << " Penelope Oscillator Table Compton for " << material->GetName() << G4endl;
196   G4cout << "*********************************************************************" << G4endl;
197   G4cout << "The table contains " << theTable->size() << " oscillators " << G4endl;
198   G4cout << "*********************************************************************" << G4endl;
199   if (theTable->size() < 10)
200     for (std::size_t k=0;k<theTable->size();++k)
201       {
202   G4cout << "Oscillator # " << k << " Z = " << (*theTable)[k]->GetParentZ() <<
203     " Shell Flag = " << (*theTable)[k]->GetShellFlag() <<
204      " Parent shell ID = " << (*theTable)[k]->GetParentShellID() << G4endl;
205   G4cout << "Compton index = " << (*theTable)[k]->GetHartreeFactor() << G4endl;
206   G4cout << "Ionisation energy = " << (*theTable)[k]->GetIonisationEnergy()/eV << " eV" << G4endl;
207   G4cout << "Occupation number = " << (*theTable)[k]->GetOscillatorStrength() << G4endl;
208   G4cout << "*********************************************************************" << G4endl;
209       }
210   for (std::size_t k=0;k<theTable->size();++k)
211     {
212       G4cout << k << " " << (*theTable)[k]->GetOscillatorStrength() << " " <<
213   (*theTable)[k]->GetIonisationEnergy()/eV << " " << (*theTable)[k]->GetHartreeFactor() << " " <<
214   (*theTable)[k]->GetParentZ() << " " << (*theTable)[k]->GetShellFlag() << " " <<
215   (*theTable)[k]->GetParentShellID() << G4endl;
216     }
217   G4cout << "*********************************************************************" << G4endl;
218 
219   return;
220 }
221 
222 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
223 
224 void G4PenelopeOscillatorManager::CheckForTablesCreated()
225 {
226   //Tables should be created at the same time, since they are both filled
227   //simultaneously
228   if (!fOscillatorStoreIonisation)
229     {
230       fOscillatorStoreIonisation = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
231       if (!fReadElementData)
232   ReadElementData();
233       if (!fOscillatorStoreIonisation)
234   //It should be ok now
235   G4Exception("G4PenelopeOscillatorManager::GetOscillatorTableIonisation()",
236         "em2034",FatalException,
237         "Problem in allocating the Oscillator Store for Ionisation");
238     }
239 
240   if (!fOscillatorStoreCompton)
241     {
242       fOscillatorStoreCompton = new std::map<const G4Material*,G4PenelopeOscillatorTable*>;
243       if (!fReadElementData)
244   ReadElementData();
245       if (!fOscillatorStoreCompton)
246   //It should be ok now
247   G4Exception("G4PenelopeOscillatorManager::GetOscillatorTableIonisation()",
248         "em2034",FatalException,
249         "Problem in allocating the Oscillator Store for Compton");
250     }
251 
252   if (!fAtomicNumber)
253     fAtomicNumber = new std::map<const G4Material*,G4double>;
254   if (!fAtomicMass)
255     fAtomicMass = new std::map<const G4Material*,G4double>;
256   if (!fExcitationEnergy)
257     fExcitationEnergy = new std::map<const G4Material*,G4double>;
258   if (!fPlasmaSquared)
259     fPlasmaSquared = new std::map<const G4Material*,G4double>;
260   if (!fAtomsPerMolecule)
261     fAtomsPerMolecule = new std::map<const G4Material*,G4double>;
262   if (!fAtomTablePerMolecule)
263     fAtomTablePerMolecule = new std::map< std::pair<const G4Material*,G4int>, G4double>;
264 }
265 
266 
267 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
268 
269 G4double G4PenelopeOscillatorManager::GetTotalZ(const G4Material* mat)
270 {
271   // (1) First time, create fOscillatorStores and read data
272   CheckForTablesCreated();
273 
274   // (2) Check if the material has been already included
275   if (fAtomicNumber->count(mat))
276     return fAtomicNumber->find(mat)->second;
277 
278   // (3) If we are here, it means that we have to create the table for the material
279   BuildOscillatorTable(mat);
280 
281   // (4) now, the oscillator store should be ok
282   if (fAtomicNumber->count(mat))
283     return fAtomicNumber->find(mat)->second;
284   else
285     {
286       G4cout << "G4PenelopeOscillatorManager::GetTotalZ() " << G4endl;
287       G4cout << "Impossible to retrieve the total Z for " << mat->GetName() << G4endl;
288       return 0;
289     }
290 }
291 
292 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
293 
294 G4double G4PenelopeOscillatorManager::GetTotalA(const G4Material* mat)
295 {
296   // (1) First time, create fOscillatorStores and read data
297   CheckForTablesCreated();
298 
299   // (2) Check if the material has been already included
300   if (fAtomicMass->count(mat))
301     return fAtomicMass->find(mat)->second;
302 
303   // (3) If we are here, it means that we have to create the table for the material
304   BuildOscillatorTable(mat);
305 
306   // (4) now, the oscillator store should be ok
307   if (fAtomicMass->count(mat))
308     return fAtomicMass->find(mat)->second;
309   else
310     {
311       G4cout << "G4PenelopeOscillatorManager::GetTotalA() " << G4endl;
312       G4cout << "Impossible to retrieve the total A for " << mat->GetName() << G4endl;
313       return 0;
314     }
315 }
316 
317 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
318 
319 G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableIonisation(const G4Material* mat)
320 {
321   // (1) First time, create fOscillatorStores and read data
322   CheckForTablesCreated();
323 
324   // (2) Check if the material has been already included
325   if (fOscillatorStoreIonisation->count(mat))
326     {
327       //Ok, it exists
328       return fOscillatorStoreIonisation->find(mat)->second;
329     }
330 
331   // (3) If we are here, it means that we have to create the table for the material
332   BuildOscillatorTable(mat);
333 
334   // (4) now, the oscillator store should be ok
335   if (fOscillatorStoreIonisation->count(mat))
336     return fOscillatorStoreIonisation->find(mat)->second;
337   else
338     {
339       G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableIonisation() " << G4endl;
340       G4cout << "Impossible to create ionisation oscillator table for " << mat->GetName() << G4endl;
341       return nullptr;
342     }
343 }
344 
345 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
346 
347 G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorIonisation(const G4Material* material,
348                      G4int index)
349 {
350   G4PenelopeOscillatorTable* theTable = GetOscillatorTableIonisation(material);
351   if (((std::size_t)index) < theTable->size())
352     return (*theTable)[index];
353   else
354     {
355       G4cout << "WARNING: Ionisation table for material " << material->GetName() << " has " <<
356   theTable->size() << " oscillators" << G4endl;
357       G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
358       G4cout << "Returning null pointer" << G4endl;
359       return nullptr;
360     }
361 }
362 
363 
364 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
365 
366 G4PenelopeOscillatorTable* G4PenelopeOscillatorManager::GetOscillatorTableCompton(const G4Material* mat)
367 {
368   // (1) First time, create fOscillatorStore and read data
369   CheckForTablesCreated();
370 
371   // (2) Check if the material has been already included
372   if (fOscillatorStoreCompton->count(mat))
373     {
374       //Ok, it exists
375       return fOscillatorStoreCompton->find(mat)->second;
376     }
377 
378   // (3) If we are here, it means that we have to create the table for the material
379   BuildOscillatorTable(mat);
380 
381   // (4) now, the oscillator store should be ok
382   if (fOscillatorStoreCompton->count(mat))
383     return fOscillatorStoreCompton->find(mat)->second;
384   else
385     {
386       G4cout << "G4PenelopeOscillatorManager::GetOscillatorTableCompton() " << G4endl;
387       G4cout << "Impossible to create Compton oscillator table for " << mat->GetName() << G4endl;
388       return nullptr;
389     }
390 }
391 
392 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
393 
394 G4PenelopeOscillator* G4PenelopeOscillatorManager::GetOscillatorCompton(const G4Material* material,
395                   G4int index)
396 {
397   G4PenelopeOscillatorTable* theTable = GetOscillatorTableCompton(material);
398   if (((std::size_t)index) < theTable->size())
399     return (*theTable)[index];
400   else
401     {
402       G4cout << "WARNING: Compton table for material " << material->GetName() << " has " <<
403   theTable->size() << " oscillators" << G4endl;
404       G4cout << "Oscillator #" << index << " cannot be retrieved" << G4endl;
405       G4cout << "Returning null pointer" << G4endl;
406       return nullptr;
407     }
408 }
409 
410 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
411 
412 void G4PenelopeOscillatorManager::BuildOscillatorTable(const G4Material* material)
413 {
414   //THIS CORRESPONDS TO THE ROUTINE PEMATW of PENELOPE
415 
416   G4double meanAtomExcitationEnergy[99] = {19.2*eV, 41.8*eV, 40.0*eV, 63.7*eV, 76.0*eV, 81.0*eV,
417              82.0*eV, 95.0*eV,115.0*eV,137.0*eV,149.0*eV,156.0*eV,
418              166.0*eV,
419              173.0*eV,173.0*eV,180.0*eV,174.0*eV,188.0*eV,190.0*eV,191.0*eV,
420              216.0*eV,233.0*eV,245.0*eV,257.0*eV,272.0*eV,286.0*eV,297.0*eV,
421              311.0*eV,322.0*eV,330.0*eV,334.0*eV,350.0*eV,347.0*eV,348.0*eV,
422              343.0*eV,352.0*eV,363.0*eV,366.0*eV,379.0*eV,393.0*eV,417.0*eV,
423              424.0*eV,428.0*eV,441.0*eV,449.0*eV,470.0*eV,470.0*eV,469.0*eV,
424              488.0*eV,488.0*eV,487.0*eV,485.0*eV,491.0*eV,482.0*eV,488.0*eV,
425              491.0*eV,501.0*eV,523.0*eV,535.0*eV,546.0*eV,560.0*eV,574.0*eV,
426              580.0*eV,591.0*eV,614.0*eV,628.0*eV,650.0*eV,658.0*eV,674.0*eV,
427              684.0*eV,694.0*eV,705.0*eV,718.0*eV,727.0*eV,736.0*eV,746.0*eV,
428              757.0*eV,790.0*eV,790.0*eV,800.0*eV,810.0*eV,823.0*eV,823.0*eV,
429              830.0*eV,825.0*eV,794.0*eV,827.0*eV,826.0*eV,841.0*eV,847.0*eV,
430              878.0*eV,890.0*eV,902.0*eV,921.0*eV,934.0*eV,939.0*eV,952.0*eV,
431              966.0*eV,980.0*eV};
432 
433   if (fVerbosityLevel > 0)
434     G4cout << "Going to build Oscillator Table for " << material->GetName() << G4endl;
435 
436   G4int nElements = (G4int)material->GetNumberOfElements();
437   const G4ElementVector* elementVector = material->GetElementVector();
438 
439   //At the moment, there's no way in Geant4 to know if a material
440   //is defined with atom numbers or fraction of weigth
441   const G4double* fractionVector = material->GetFractionVector();
442 
443   //Take always the composition by fraction of mass. For the composition by
444   //atoms: it is calculated by Geant4 but with some rounding to integers
445   G4double totalZ = 0;
446   G4double totalMolecularWeight = 0;
447   G4double meanExcitationEnergy = 0;
448 
449   std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
450 
451   for (G4int i=0;i<nElements;i++)
452     {
453       //G4int iZ = (G4int) (*elementVector)[i]->GetZ();
454       G4double fraction = fractionVector[i];
455       G4double atomicWeigth = (*elementVector)[i]->GetAtomicMassAmu();
456       StechiometricFactors->push_back(fraction/atomicWeigth);
457     }
458   //Find max
459   G4double MaxStechiometricFactor = 0.;
460   for (G4int i=0;i<nElements;i++)
461     {
462       if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
463   MaxStechiometricFactor = (*StechiometricFactors)[i];
464     }
465   if (MaxStechiometricFactor<1e-16)
466     {
467       G4ExceptionDescription ed;
468       ed << "Problem with the mass composition of " << material->GetName() << G4endl;
469       ed << "MaxStechiometricFactor = " << MaxStechiometricFactor << G4endl;
470       G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
471       "em2035",FatalException,ed);
472     }
473   //Normalize
474   for (G4int i=0;i<nElements;++i)
475     (*StechiometricFactors)[i] /=  MaxStechiometricFactor;
476 
477   // Equivalent atoms per molecule
478   G4double theatomsPerMolecule = 0;
479   for (G4int i=0;i<nElements;i++)
480     theatomsPerMolecule += (*StechiometricFactors)[i];
481   G4double moleculeDensity =
482     material->GetTotNbOfAtomsPerVolume()/theatomsPerMolecule; //molecules per unit volume
483 
484   if (fVerbosityLevel > 1)
485     {
486       for (std::size_t i=0;i<StechiometricFactors->size();++i)
487   {
488     G4cout << "Element " << (*elementVector)[i]->GetSymbol() << " (Z = " <<
489       (*elementVector)[i]->GetZasInt() << ") --> " <<
490       (*StechiometricFactors)[i] << " atoms/molecule " << G4endl;
491   }
492     }
493 
494   for (G4int i=0;i<nElements;++i)
495     {
496       G4int iZ = (*elementVector)[i]->GetZasInt();
497       totalZ += iZ * (*StechiometricFactors)[i];
498       totalMolecularWeight += (*elementVector)[i]->GetAtomicMassAmu() * (*StechiometricFactors)[i];
499       meanExcitationEnergy += iZ*G4Log(meanAtomExcitationEnergy[iZ-1])*(*StechiometricFactors)[i];
500       std::pair<const G4Material*,G4int> theKey = std::make_pair(material,iZ);
501       if (!fAtomTablePerMolecule->count(theKey))
502   fAtomTablePerMolecule->insert(std::make_pair(theKey,(*StechiometricFactors)[i]));
503     }
504   meanExcitationEnergy = G4Exp(meanExcitationEnergy/totalZ);
505 
506   fAtomicNumber->insert(std::make_pair(material,totalZ));
507   fAtomicMass->insert(std::make_pair(material,totalMolecularWeight));
508   fExcitationEnergy->insert(std::make_pair(material,meanExcitationEnergy));
509   fAtomsPerMolecule->insert(std::make_pair(material,theatomsPerMolecule));
510 
511   if (fVerbosityLevel > 1)
512     {
513       G4cout << "Calculated mean excitation energy for " << material->GetName() <<
514   " = " << meanExcitationEnergy/eV << " eV" << G4endl;
515     }
516 
517   std::vector<G4PenelopeOscillator> *helper = new std::vector<G4PenelopeOscillator>;
518 
519   //First Oscillator: conduction band. Tentativaly assumed to consist of valence electrons (each
520   //atom contributes a number of electrons equal to its lowest chemical valence)
521   G4PenelopeOscillator newOsc;
522   newOsc.SetOscillatorStrength(0.);
523   newOsc.SetIonisationEnergy(0*eV);
524   newOsc.SetHartreeFactor(0);
525   newOsc.SetParentZ(0);
526   newOsc.SetShellFlag(30);
527   newOsc.SetParentShellID(30); //does not correspond to any "real" level
528   helper->push_back(newOsc);
529 
530   //Load elements and oscillators
531   for (G4int k=0;k<nElements;k++)
532     {
533       G4double Z = (*elementVector)[k]->GetZ();
534       G4bool finished = false;
535       for (G4int i=0;i<2000 && !finished;i++)
536   {
537     /*
538       fElementData[0][i] = Z;
539       fElementData[1][i] = shellCode;
540       fElementData[2][i] = occupationNumber;
541       fElementData[3][i] = ionisationEnergy;
542       fElementData[4][i] = hartreeProfile;
543     */
544     if (fElementData[0][i] == Z)
545       {
546         G4int shellID = (G4int) fElementData[1][i];
547         G4double occup = fElementData[2][i];
548         if (shellID > 0)
549     {
550 
551       if (std::fabs(occup) > 0)
552         {
553           G4PenelopeOscillator newOscLocal;
554           newOscLocal.SetOscillatorStrength(std::fabs(occup)*(*StechiometricFactors)[k]);
555           newOscLocal.SetIonisationEnergy(fElementData[3][i]);
556           newOscLocal.SetHartreeFactor(fElementData[4][i]/fine_structure_const);
557           newOscLocal.SetParentZ(fElementData[0][i]);
558           //keep track of the origianl shell level
559           newOscLocal.SetParentShellID((G4int)fElementData[1][i]);
560           //register only K, L and M shells. Outer shells all grouped with
561           //shellIndex = 30
562           if (fElementData[0][i] > 6 && fElementData[1][i] < 10)
563       newOscLocal.SetShellFlag(((G4int)fElementData[1][i]));
564           else
565       newOscLocal.SetShellFlag(30);
566           helper->push_back(newOscLocal);
567           if (occup < 0)
568       {
569         G4double ff = (*helper)[0].GetOscillatorStrength();
570         ff += std::fabs(occup)*(*StechiometricFactors)[k];
571         (*helper)[0].SetOscillatorStrength(ff);
572       }
573         }
574     }
575       }
576     if (fElementData[0][i] > Z)
577       finished = true;
578   }
579     }
580 
581   delete StechiometricFactors;
582 
583   //NOW: sort oscillators according to increasing ionisation energy
584   //Notice: it works because helper is a vector of _object_, not a
585   //vector to _pointers_
586   std::sort(helper->begin(),helper->end());
587 
588   // Plasma energy and conduction band excitation
589   static const G4double RydbergEnergy = 13.60569*eV;
590   G4double Omega = std::sqrt(4*pi*moleculeDensity*totalZ*Bohr_radius)*Bohr_radius*2.0*RydbergEnergy;
591   G4double conductionStrength = (*helper)[0].GetOscillatorStrength();
592   G4double plasmaEnergy = Omega*std::sqrt(conductionStrength/totalZ);
593 
594   fPlasmaSquared->insert(std::make_pair(material,Omega*Omega));
595 
596   G4bool isAConductor = false;
597   G4int nullOsc = 0;
598 
599   if (fVerbosityLevel > 1)
600     {
601       G4cout << "Estimated oscillator strength and energy of plasmon: " <<
602   conductionStrength << " and " << plasmaEnergy/eV << " eV" << G4endl;
603     }
604 
605   if (conductionStrength < 0.01 || plasmaEnergy<1.0*eV) //this is an insulator
606     {
607       if (fVerbosityLevel >1 )
608   G4cout << material->GetName() << " is an insulator " << G4endl;
609       //remove conduction band oscillator
610       helper->erase(helper->begin());
611     }
612   else //this is a conductor, Outer shells moved to conduction band
613     {
614       if (fVerbosityLevel >1 )
615   G4cout << material->GetName() << " is a conductor " << G4endl;
616       isAConductor = true;
617       //copy the conduction strength.. The number is going to change.
618       G4double conductionStrengthCopy = conductionStrength;
619       G4bool quit = false;
620       for (std::size_t i = 1; i<helper->size() && !quit ;++i)
621   {
622     G4double oscStre = (*helper)[i].GetOscillatorStrength();
623     //loop is repeated over here
624     if (oscStre < conductionStrengthCopy)
625       {
626         conductionStrengthCopy = conductionStrengthCopy-oscStre;
627         (*helper)[i].SetOscillatorStrength(0.);
628         nullOsc++;
629       }
630     else //this is passed only once - no goto -
631       {
632         quit = true;
633         (*helper)[i].SetOscillatorStrength(oscStre-conductionStrengthCopy);
634         if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
635     {
636       conductionStrength += (*helper)[i].GetOscillatorStrength();
637       (*helper)[i].SetOscillatorStrength(0.);
638       nullOsc++;
639     }
640       }
641   }
642       //Update conduction band
643       (*helper)[0].SetOscillatorStrength(conductionStrength);
644       (*helper)[0].SetIonisationEnergy(0.);
645       (*helper)[0].SetResonanceEnergy(plasmaEnergy);
646       G4double hartree = 0.75/std::sqrt(3.0*pi*pi*moleculeDensity*
647           Bohr_radius*Bohr_radius*Bohr_radius*conductionStrength);
648       (*helper)[0].SetHartreeFactor(hartree/fine_structure_const);
649   }
650 
651   //Check f-sum rule
652   G4double sum = 0;
653   for (std::size_t i=0;i<helper->size();++i)
654     {
655       sum += (*helper)[i].GetOscillatorStrength();
656     }
657   if (std::fabs(sum-totalZ) > (1e-6*totalZ))
658     {
659       G4ExceptionDescription ed;
660       ed << "Inconsistent oscillator data for " << material->GetName() << G4endl;
661       ed << sum << " " << totalZ << G4endl;
662       G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
663       "em2036",FatalException,ed);
664     }
665   if (std::fabs(sum-totalZ) > (1e-12*totalZ))
666     {
667       G4double fact = totalZ/sum;
668       for (std::size_t i=0;i<helper->size();++i)
669   {
670     G4double ff = (*helper)[i].GetOscillatorStrength()*fact;
671     (*helper)[i].SetOscillatorStrength(ff);
672   }
673     }
674 
675    //Remove null items
676   for (G4int k=0;k<nullOsc;k++)
677     {
678       G4bool exit=false;
679       for (std::size_t i=0;i<helper->size() && !exit;++i)
680   {
681     if (std::fabs((*helper)[i].GetOscillatorStrength()) < 1e-12)
682       {
683         helper->erase(helper->begin()+i);
684         exit = true;
685       }
686   }
687     }
688 
689   //Sternheimer's adjustment factor
690   G4double adjustmentFactor = 0;
691   if (helper->size() > 1)
692     {
693       G4double TST = totalZ*G4Log(meanExcitationEnergy/eV);
694       G4double AALow = 0.1;
695       G4double AAHigh = 10.;
696       do
697   {
698     adjustmentFactor = (AALow+AAHigh)*0.5;
699     G4double sumLocal = 0;
700     for (std::size_t i=0;i<helper->size();++i)
701       {
702         if (i == 0 && isAConductor)
703     {
704       G4double resEne = (*helper)[i].GetResonanceEnergy();
705       sumLocal += (*helper)[i].GetOscillatorStrength()*G4Log(resEne/eV);
706     }
707         else
708     {
709       G4double ionEne = (*helper)[i].GetIonisationEnergy();
710       G4double oscStre = (*helper)[i].GetOscillatorStrength();
711       G4double WI2 = (adjustmentFactor*adjustmentFactor*ionEne*ionEne) +
712         2./3.*(oscStre/totalZ)*Omega*Omega;
713       G4double resEne = std::sqrt(WI2);
714       (*helper)[i].SetResonanceEnergy(resEne);
715       sumLocal +=  (*helper)[i].GetOscillatorStrength()*G4Log(resEne/eV);
716     }
717       }
718     if (sumLocal < TST)
719       AALow = adjustmentFactor;
720     else
721       AAHigh = adjustmentFactor;
722     if (fVerbosityLevel > 3)
723       G4cout << "Sternheimer's adjustment factor loops: " << AALow << " " << AAHigh << " " <<
724         adjustmentFactor << " " << TST << " " <<
725         sumLocal << G4endl;
726   }while((AAHigh-AALow)>(1e-14*adjustmentFactor));
727     }
728   else
729     {
730       G4double ionEne = (*helper)[0].GetIonisationEnergy();
731       (*helper)[0].SetIonisationEnergy(std::fabs(ionEne));
732       (*helper)[0].SetResonanceEnergy(meanExcitationEnergy);
733     }
734   if (fVerbosityLevel > 1)
735     {
736       G4cout << "Sternheimer's adjustment factor: " << adjustmentFactor << G4endl;
737     }
738 
739   //Check again for data consistency
740   G4double xcheck = (*helper)[0].GetOscillatorStrength()*G4Log((*helper)[0].GetResonanceEnergy());
741   G4double TST = (*helper)[0].GetOscillatorStrength();
742   for (std::size_t i=1;i<helper->size();++i)
743     {
744       xcheck += (*helper)[i].GetOscillatorStrength()*G4Log((*helper)[i].GetResonanceEnergy());
745       TST += (*helper)[i].GetOscillatorStrength();
746     }
747   if (std::fabs(TST-totalZ)>1e-8*totalZ)
748     {
749       G4ExceptionDescription ed;
750       ed << "Inconsistent oscillator data " << G4endl;
751       ed << TST << " " << totalZ << G4endl;
752       G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
753       "em2036",FatalException,ed);
754     }
755   xcheck = G4Exp(xcheck/totalZ);
756   if (std::fabs(xcheck-meanExcitationEnergy) > 1e-8*meanExcitationEnergy)
757     {
758       G4ExceptionDescription ed;
759       ed << "Error in Sterheimer factor calculation " << G4endl;
760       ed << xcheck/eV << " " << meanExcitationEnergy/eV << G4endl;
761       G4Exception("G4PenelopeOscillatorManager::BuildOscillatorTable()",
762       "em2037",FatalException,ed);
763     }
764 
765   //Selection of the lowest ionisation energy for inner shells. Only the K, L and M shells with
766   //ionisation energy less than the N1 shell of the heaviest element in the material are considered as
767   //inner shells. As a results, the inner/outer shell character of an atomic shell depends on the
768   //composition of the material.
769   G4double Zmax = 0;
770   for (G4int k=0;k<nElements;k++)
771     {
772       G4double Z = (*elementVector)[k]->GetZ();
773       if (Z>Zmax) Zmax = Z;
774     }
775   //Find N1 level of the heaviest element (if any).
776   G4bool found = false;
777   G4double cutEnergy = 50*eV;
778   for (std::size_t i=0;i<helper->size() && !found;++i)
779     {
780       G4double Z = (*helper)[i].GetParentZ();
781       G4int shID = (*helper)[i].GetParentShellID(); //look for the N1 level
782       if (shID == 10 && Z == Zmax)
783   {
784     found = true;
785     if ((*helper)[i].GetIonisationEnergy() > cutEnergy)
786       cutEnergy = (*helper)[i].GetIonisationEnergy();
787   }
788     }
789   //Make that cutEnergy cannot be higher than 250 eV, namely the fluorescence level by
790   //Geant4
791   G4double lowEnergyLimitForFluorescence = 250*eV;
792   cutEnergy = std::min(cutEnergy,lowEnergyLimitForFluorescence);
793 
794   if (fVerbosityLevel > 1)
795       G4cout << "Cutoff energy: " << cutEnergy/eV << " eV" << G4endl;
796   //
797   //Copy helper in the oscillatorTable for Ionisation
798   //
799   //Oscillator table Ionisation for the material
800   G4PenelopeOscillatorTable* theTable = new G4PenelopeOscillatorTable(); //vector of oscillator
801   G4PenelopeOscillatorResEnergyComparator comparator;
802   std::sort(helper->begin(),helper->end(),comparator);
803 
804   //COPY THE HELPER (vector of object) to theTable (vector of Pointers).
805   for (std::size_t i=0;i<helper->size();++i)
806     {
807       //copy content --> one may need it later (e.g. to fill another table, with variations)
808       G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
809       theTable->push_back(theOsc);
810     }
811 
812   //Oscillators of outer shells with resonance energies differing by a factor less than
813   //Rgroup are grouped as a single oscillator
814   G4double Rgroup = 1.05;
815   std::size_t Nost = theTable->size();
816 
817   std::size_t firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
818   G4bool loopAgain = false;
819   G4int nLoops = 0;
820   G4int removedLevels = 0;
821   do
822     {
823       loopAgain = false;
824       nLoops++;
825       if (Nost>firstIndex+1)
826   {   
827     removedLevels = 0;
828     for (std::size_t i=firstIndex;i<theTable->size()-1;++i)
829       {
830         G4bool skipLoop = false;
831         G4int shellFlag = (*theTable)[i]->GetShellFlag();
832         G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
833         G4double resEne = (*theTable)[i]->GetResonanceEnergy();
834         G4double resEnePlus1 = (*theTable)[i+1]->GetResonanceEnergy();
835         G4double oscStre = (*theTable)[i]->GetOscillatorStrength();
836         G4double oscStrePlus1 = (*theTable)[i+1]->GetOscillatorStrength();
837         //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
838         if (ionEne>cutEnergy) //remove condition that shellFlag < 10!
839     skipLoop = true;
840         if (resEne<1.0*eV || resEnePlus1<1.0*eV)
841     skipLoop = true;
842         if (resEnePlus1 > Rgroup*resEne)
843     skipLoop = true;
844         if (!skipLoop)
845     {
846       G4double newRes = G4Exp((oscStre*G4Log(resEne)+
847                 oscStrePlus1*G4Log(resEnePlus1))
848                /(oscStre+oscStrePlus1));
849       (*theTable)[i]->SetResonanceEnergy(newRes);
850       G4double newIon = (oscStre*ionEne+
851              oscStrePlus1*(*theTable)[i+1]->GetIonisationEnergy())/
852         (oscStre+oscStrePlus1);
853       (*theTable)[i]->SetIonisationEnergy(newIon);
854       G4double newStre = oscStre+oscStrePlus1;
855       (*theTable)[i]->SetOscillatorStrength(newStre);
856       G4double newHartree = (oscStre*(*theTable)[i]->GetHartreeFactor()+
857            oscStrePlus1*(*theTable)[i+1]->GetHartreeFactor())/
858         (oscStre+oscStrePlus1);
859       (*theTable)[i]->SetHartreeFactor(newHartree);
860       if ((*theTable)[i]->GetParentZ() != (*theTable)[i+1]->GetParentZ())
861         (*theTable)[i]->SetParentZ(0.);
862       if (shellFlag < 10 || (*theTable)[i+1]->GetShellFlag() < 10)
863         {
864           G4int newFlag = std::min(shellFlag,(*theTable)[i+1]->GetShellFlag());
865           (*theTable)[i]->SetShellFlag(newFlag);
866         }
867       else
868         (*theTable)[i]->SetShellFlag(30);
869       //We've lost anyway the track of the original level
870       (*theTable)[i]->SetParentShellID((*theTable)[i]->GetShellFlag());
871 
872 
873       if (i<theTable->size()-2)
874         {
875           for (std::size_t ii=i+1;ii<theTable->size()-1;++ii)
876       (*theTable)[ii] = (*theTable)[ii+1];
877         }
878       //G4cout << theTable->size() << G4endl;
879       theTable->erase(theTable->begin()+theTable->size()-1); //delete last element
880       removedLevels++;
881     }
882       }
883   }
884       if (removedLevels)
885   {
886     Nost -= removedLevels;
887     loopAgain = true;
888   }
889       if (Rgroup < 1.414213 || Nost > 64)
890   {
891     Rgroup = Rgroup*Rgroup;
892     loopAgain = true;
893   }
894       //Add protection against infinite loops here
895       if (nLoops > 100 && !removedLevels)
896   loopAgain = false;
897     }while(loopAgain);
898 
899   if (fVerbosityLevel > 1)
900     {
901       G4cout << "Final grouping factor for Ionisation: " << Rgroup << G4endl;
902     }
903 
904   //Final Electron/Positron model parameters
905   for (std::size_t i=0;i<theTable->size();++i)
906     {
907       //Set cutoff recoil energy for the resonant mode
908       G4double ionEne = (*theTable)[i]->GetIonisationEnergy();
909       if (ionEne < 1e-3*eV)
910   {
911     G4double resEne = (*theTable)[i]->GetResonanceEnergy();
912     (*theTable)[i]->SetIonisationEnergy(0.*eV);
913     (*theTable)[i]->SetCutoffRecoilResonantEnergy(resEne);
914   }
915       else
916   (*theTable)[i]->SetCutoffRecoilResonantEnergy(ionEne);
917     }
918 
919   //Last step
920   fOscillatorStoreIonisation->insert(std::make_pair(material,theTable));
921 
922   /******************************************
923     SAME FOR COMPTON
924   ******************************************/
925   //
926   //Copy helper in the oscillatorTable for Compton
927   //
928   //Oscillator table Ionisation for the material
929   G4PenelopeOscillatorTable* theTableC = new G4PenelopeOscillatorTable(); //vector of oscillator
930   //order by ionisation energy
931   std::sort(helper->begin(),helper->end());
932   //COPY THE HELPER (vector of object) to theTable (vector of Pointers).
933   for (std::size_t i=0;i<helper->size();++i)
934     {
935       //copy content --> one may need it later (e.g. to fill another table, with variations)
936       G4PenelopeOscillator* theOsc = new G4PenelopeOscillator((*helper)[i]);
937       theTableC->push_back(theOsc);
938     }
939   //Oscillators of outer shells with resonance energies differing by a factor less than
940   //Rgroup are grouped as a single oscillator
941   Rgroup = 1.5;
942   Nost = theTableC->size();
943 
944   firstIndex = (isAConductor) ? 1 : 0; //for conductors, skip conduction oscillator
945   loopAgain = false;
946   removedLevels = 0;
947   do
948     {
949       nLoops++;
950       loopAgain = false;
951       if (Nost>firstIndex+1)
952   {
953     removedLevels = 0;
954     for (std::size_t i=firstIndex;i<theTableC->size()-1;++i)
955       {
956         G4bool skipLoop = false;
957         G4double ionEne = (*theTableC)[i]->GetIonisationEnergy();
958         G4double ionEnePlus1 = (*theTableC)[i+1]->GetIonisationEnergy();
959         G4double oscStre = (*theTableC)[i]->GetOscillatorStrength();
960         G4double oscStrePlus1 = (*theTableC)[i+1]->GetOscillatorStrength();
961         //if (shellFlag < 10 && ionEne>cutEnergy) in Penelope
962         if (ionEne>cutEnergy)
963     skipLoop = true;
964         if (ionEne<1.0*eV || ionEnePlus1<1.0*eV)
965     skipLoop = true;
966         if (ionEnePlus1 > Rgroup*ionEne)
967     skipLoop = true;
968 
969         if (!skipLoop)
970     {
971       G4double newIon = (oscStre*ionEne+
972              oscStrePlus1*ionEnePlus1)/
973         (oscStre+oscStrePlus1);
974       (*theTableC)[i]->SetIonisationEnergy(newIon);
975       G4double newStre = oscStre+oscStrePlus1;
976       (*theTableC)[i]->SetOscillatorStrength(newStre);
977       G4double newHartree = (oscStre*(*theTableC)[i]->GetHartreeFactor()+
978            oscStrePlus1*(*theTableC)[i+1]->GetHartreeFactor())/
979         (oscStre+oscStrePlus1);
980       (*theTableC)[i]->SetHartreeFactor(newHartree);
981       if ((*theTableC)[i]->GetParentZ() != (*theTableC)[i+1]->GetParentZ())
982         (*theTableC)[i]->SetParentZ(0.);
983       (*theTableC)[i]->SetShellFlag(30);
984       (*theTableC)[i]->SetParentShellID((*theTableC)[i]->GetShellFlag());
985 
986       if (i<theTableC->size()-2)
987         {
988           for (std::size_t ii=i+1;ii<theTableC->size()-1;++ii)
989       (*theTableC)[ii] = (*theTableC)[ii+1];
990         }
991       theTableC->erase(theTableC->begin()+theTableC->size()-1); //delete last element
992       removedLevels++;
993     }
994       }
995   }
996       if (removedLevels)
997   {
998     Nost -= removedLevels;
999     loopAgain = true;
1000   }
1001       if (Rgroup < 2.0 || Nost > 64)
1002   {
1003     Rgroup = Rgroup*Rgroup;
1004     loopAgain = true;
1005   }
1006       //Add protection against infinite loops here
1007       if (nLoops > 100 && !removedLevels)
1008   loopAgain = false;
1009     }while(loopAgain);
1010 
1011 
1012    if (fVerbosityLevel > 1)
1013     {
1014       G4cout << "Final grouping factor for Compton: " << Rgroup << G4endl;
1015     }
1016 
1017    //Last step
1018    fOscillatorStoreCompton->insert(std::make_pair(material,theTableC));
1019    
1020    //CLEAN UP theHelper and its content
1021    delete helper;
1022    if (fVerbosityLevel > 1)
1023      Dump(material);
1024    
1025   return;
1026 }
1027 
1028 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1029 
1030 void G4PenelopeOscillatorManager::ReadElementData()
1031 {
1032   if (fVerbosityLevel > 0)
1033     {
1034       G4cout << "G4PenelopeOscillatorManager::ReadElementData()" << G4endl;
1035       G4cout << "Going to read Element Data" << G4endl;
1036     }
1037     const char* path = G4FindDataDir("G4LEDATA");
1038     if(!path)
1039     {
1040       G4String excep = "G4PenelopeOscillatorManager - G4LEDATA environment variable not set!";
1041       G4Exception("G4PenelopeOscillatorManager::ReadElementData()",
1042       "em0006",FatalException,excep);
1043       return;
1044     }
1045   G4String pathString(path);
1046   G4String pathFile = pathString + "/penelope/pdatconf.p08";
1047   std::ifstream file(pathFile);
1048 
1049   if (!file.is_open())
1050     {
1051       G4String excep = "G4PenelopeOscillatorManager - data file " + pathFile + " not found!";
1052       G4Exception("G4PenelopeOscillatorManager::ReadElementData()",
1053       "em0003",FatalException,excep);
1054     }
1055 
1056   G4AtomicTransitionManager* theTransitionManager =
1057     G4AtomicTransitionManager::Instance();
1058   theTransitionManager->Initialise();
1059 
1060   //Read header (22 lines)
1061   G4String theHeader;
1062   for (G4int iline=0;iline<22;iline++)
1063     getline(file,theHeader);
1064   //Done
1065   G4int Z=0;
1066   G4int shellCode = 0;
1067   G4String shellId = "NULL";
1068   G4int occupationNumber = 0;
1069   G4double ionisationEnergy = 0.0*eV;
1070   G4double hartreeProfile = 0.;
1071   G4int shellCounter = 0;
1072   G4int oldZ = -1;
1073   G4int numberOfShells = 0;
1074   //Start reading data
1075   for (G4int i=0;!file.eof();i++)
1076     {
1077       file >> Z >> shellCode >> shellId >> occupationNumber >> ionisationEnergy >> hartreeProfile;
1078       if (Z>0 && i<2000)
1079   {
1080     fElementData[0][i] = Z;
1081     fElementData[1][i] = shellCode;
1082     fElementData[2][i] = occupationNumber;
1083     //reset things
1084     if (Z != oldZ)
1085       {
1086         shellCounter = 0;
1087         oldZ = Z;
1088         numberOfShells = theTransitionManager->NumberOfShells(Z);
1089       }
1090     G4double bindingEnergy = -1*eV;
1091     if (shellCounter<numberOfShells)
1092       {
1093         G4AtomicShell* shell = theTransitionManager->Shell(Z,shellCounter);
1094         bindingEnergy = shell->BindingEnergy();
1095       }
1096     //Valid level found in the G4AtomicTransition database: keep it, otherwise use
1097     //the ionisation energy found in the Penelope database
1098     fElementData[3][i] = (bindingEnergy>100*eV) ? bindingEnergy : ionisationEnergy*eV;
1099     fElementData[4][i] = hartreeProfile;
1100     shellCounter++;
1101   }
1102     }
1103   file.close();
1104 
1105   if (fVerbosityLevel > 1)
1106     {
1107       G4cout << "G4PenelopeOscillatorManager::ReadElementData(): Data file read" << G4endl;
1108     }
1109   fReadElementData = true;
1110   return;
1111 }
1112 
1113 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1114 G4double G4PenelopeOscillatorManager::GetMeanExcitationEnergy(const G4Material* mat)
1115 {
1116   // (1) First time, create fOscillatorStores and read data
1117   CheckForTablesCreated();
1118 
1119   // (2) Check if the material has been already included
1120   if (fExcitationEnergy->count(mat))
1121     return fExcitationEnergy->find(mat)->second;
1122 
1123   // (3) If we are here, it means that we have to create the table for the material
1124   BuildOscillatorTable(mat);
1125 
1126   // (4) now, the oscillator store should be ok
1127   if (fExcitationEnergy->count(mat))
1128     return fExcitationEnergy->find(mat)->second;
1129   else
1130     {
1131       G4cout << "G4PenelopeOscillatorManager::GetMolecularExcitationEnergy() " << G4endl;
1132       G4cout << "Impossible to retrieve the excitation energy for  " << mat->GetName() << G4endl;
1133       return 0;
1134     }
1135 }
1136 
1137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1138 G4double G4PenelopeOscillatorManager::GetPlasmaEnergySquared(const G4Material* mat)
1139 {
1140   // (1) First time, create fOscillatorStores and read data
1141   CheckForTablesCreated();
1142 
1143   // (2) Check if the material has been already included
1144   if (fPlasmaSquared->count(mat))
1145     return fPlasmaSquared->find(mat)->second;
1146 
1147   // (3) If we are here, it means that we have to create the table for the material
1148   BuildOscillatorTable(mat);
1149 
1150   // (4) now, the oscillator store should be ok
1151   if (fPlasmaSquared->count(mat))
1152     return fPlasmaSquared->find(mat)->second;
1153   else
1154     {
1155       G4cout << "G4PenelopeOscillatorManager::GetPlasmaEnergySquared() " << G4endl;
1156       G4cout << "Impossible to retrieve the plasma energy for  " << mat->GetName() << G4endl;
1157       return 0;
1158     }
1159 }
1160 
1161 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1162 
1163 G4double G4PenelopeOscillatorManager::GetAtomsPerMolecule(const G4Material* mat)
1164 {
1165   // (1) First time, create fOscillatorStores and read data
1166   CheckForTablesCreated();
1167 
1168   // (2) Check if the material has been already included
1169   if (fAtomsPerMolecule->count(mat))
1170     return fAtomsPerMolecule->find(mat)->second;
1171 
1172   // (3) If we are here, it means that we have to create the table for the material
1173   BuildOscillatorTable(mat);
1174 
1175   // (4) now, the oscillator store should be ok
1176   if (fAtomsPerMolecule->count(mat))
1177     return fAtomsPerMolecule->find(mat)->second;
1178   else
1179     {
1180       G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl;
1181       G4cout << "Impossible to retrieve the number of atoms per molecule for  "
1182        << mat->GetName() << G4endl;
1183       return 0;
1184     }
1185 }
1186 
1187 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1188 
1189 G4double G4PenelopeOscillatorManager::GetNumberOfZAtomsPerMolecule(const G4Material* mat,G4int Z)
1190 {
1191   // (1) First time, create fOscillatorStores and read data
1192   CheckForTablesCreated();
1193 
1194   // (2) Check if the material/Z couple has been already included
1195   std::pair<const G4Material*,G4int> theKey = std::make_pair(mat,Z);
1196   if (fAtomTablePerMolecule->count(theKey))
1197     return fAtomTablePerMolecule->find(theKey)->second;
1198 
1199   // (3) If we are here, it means that we have to create the table for the material
1200   BuildOscillatorTable(mat);
1201 
1202   // (4) now, the oscillator store should be ok
1203   if (fAtomTablePerMolecule->count(theKey))
1204     return fAtomTablePerMolecule->find(theKey)->second;
1205   else
1206     {
1207       G4cout << "G4PenelopeOscillatorManager::GetAtomsPerMolecule() " << G4endl;
1208       G4cout << "Impossible to retrieve the number of atoms per molecule for Z = "
1209        << Z << " in material " << mat->GetName() << G4endl;
1210       return 0;
1211     }
1212 }
1213