Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // -------------------------------------------------------------- 28 // 29 // File name: G4PenelopeBremsstrahlungAngular 30 // 31 // Author: Luciano Pandola 32 // 33 // Creation date: November 2010 34 // 35 // History: 36 // ----------- 37 // 23 Nov 2010 L. Pandola 1st implementation 38 // 24 May 2011 L. Pandola Renamed (make v2008 as default Penelope) 39 // 13 Mar 2012 L. Pandola Made a derived class of G4VEmAngularDistribution 40 // and update the interface accordingly 41 // 18 Jul 2012 L. Pandola Migrated to the new basic interface of G4VEmAngularDistribution 42 // Now returns a G4ThreeVector and takes care of the rotation 43 // 03 Oct 2013 L. Pandola Migrated to MT: only the master model handles tables 44 // 17 Oct 2013 L. Pandola Partially revert MT migration. The angular generator is kept as 45 // thread-local, and each worker has full access to it. 46 // 47 //---------------------------------------------------------------- 48 49 #include "G4PenelopeBremsstrahlungAngular.hh" 50 51 #include "globals.hh" 52 #include "G4PhysicalConstants.hh" 53 #include "G4SystemOfUnits.hh" 54 #include "G4PhysicsFreeVector.hh" 55 #include "G4PhysicsTable.hh" 56 #include "G4Material.hh" 57 #include "Randomize.hh" 58 #include "G4Exp.hh" 59 60 G4PenelopeBremsstrahlungAngular::G4PenelopeBremsstrahlungAngular() : 61 G4VEmAngularDistribution("Penelope"), fEffectiveZSq(nullptr), 62 fLorentzTables1(nullptr),fLorentzTables2(nullptr) 63 64 { 65 fDataRead = false; 66 fVerbosityLevel = 0; 67 } 68 69 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 70 71 G4PenelopeBremsstrahlungAngular::~G4PenelopeBremsstrahlungAngular() 72 { 73 ClearTables(); 74 } 75 76 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 77 78 void G4PenelopeBremsstrahlungAngular::Initialize() 79 { 80 ClearTables(); 81 } 82 83 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 84 85 void G4PenelopeBremsstrahlungAngular::ClearTables() 86 { 87 if (fLorentzTables1) 88 { 89 for (auto j=fLorentzTables1->begin(); j != fLorentzTables1->end(); ++j) 90 { 91 G4PhysicsTable* tab = j->second; 92 tab->clearAndDestroy(); 93 delete tab; 94 } 95 fLorentzTables1->clear(); 96 delete fLorentzTables1; 97 fLorentzTables1 = nullptr; 98 } 99 100 if (fLorentzTables2) 101 { 102 for (auto j=fLorentzTables2->begin(); j != fLorentzTables2->end(); ++j) 103 { 104 G4PhysicsTable* tab = j->second; 105 tab->clearAndDestroy(); 106 delete tab; 107 } 108 fLorentzTables2->clear(); 109 delete fLorentzTables2; 110 fLorentzTables2 = nullptr; 111 } 112 if (fEffectiveZSq) 113 { 114 delete fEffectiveZSq; 115 fEffectiveZSq = nullptr; 116 } 117 } 118 119 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 120 121 void G4PenelopeBremsstrahlungAngular::ReadDataFile() 122 { 123 //Read information from DataBase file 124 const char* path = G4FindDataDir("G4LEDATA"); 125 if (!path) 126 { 127 G4String excep = 128 "G4PenelopeBremsstrahlungAngular - G4LEDATA environment variable not set!"; 129 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 130 "em0006",FatalException,excep); 131 return; 132 } 133 G4String pathString(path); 134 G4String pathFile = pathString + "/penelope/bremsstrahlung/pdbrang.p08"; 135 std::ifstream file(pathFile); 136 137 if (!file.is_open()) 138 { 139 G4String excep = "G4PenelopeBremsstrahlungAngular - data file " + pathFile + " not found!"; 140 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 141 "em0003",FatalException,excep); 142 return; 143 } 144 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K 145 146 for (k=0;k<fNumberofKPoints;k++) 147 for (i=0;i<fNumberofZPoints;i++) 148 for (j=0;j<fNumberofEPoints;j++) 149 { 150 G4double a1,a2; 151 G4int ik1,iz1,ie1; 152 G4double zr,er,kr; 153 file >> iz1 >> ie1 >> ik1 >> zr >> er >> kr >> a1 >> a2; 154 //check the data are correct 155 if ((iz1-1 == i) && (ik1-1 == k) && (ie1-1 == j)) 156 { 157 fQQ1[i][j][k]=a1; 158 fQQ2[i][j][k]=a2; 159 } 160 else 161 { 162 G4ExceptionDescription ed; 163 ed << "Corrupted data file " << pathFile << "?" << G4endl; 164 G4Exception("G4PenelopeBremsstrahlungAngular::ReadDataFile()", 165 "em0005",FatalException,ed); 166 } 167 } 168 file.close(); 169 fDataRead = true; 170 } 171 172 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 173 174 void G4PenelopeBremsstrahlungAngular::PrepareTables(const G4Material* material,G4bool /*isMaster*/ ) 175 { 176 //Unused at the moment: the G4PenelopeBremsstrahlungAngular is thread-local, so each worker 177 //builds its own version of the tables. 178 179 //Check if data file has already been read 180 if (!fDataRead) 181 { 182 ReadDataFile(); 183 if (!fDataRead) 184 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()", 185 "em2001",FatalException,"Unable to build interpolation table"); 186 } 187 188 if (!fLorentzTables1) 189 fLorentzTables1 = new std::map<G4double,G4PhysicsTable*>; 190 if (!fLorentzTables2) 191 fLorentzTables2 = new std::map<G4double,G4PhysicsTable*>; 192 193 G4double Zmat = CalculateEffectiveZ(material); 194 195 const G4int reducedEnergyGrid=21; 196 //Support arrays. 197 G4double betas[fNumberofEPoints]; //betas for interpolation 198 //tables for interpolation 199 G4double Q1[fNumberofEPoints][fNumberofKPoints]; 200 G4double Q2[fNumberofEPoints][fNumberofKPoints]; 201 //expanded tables for interpolation 202 G4double Q1E[fNumberofEPoints][reducedEnergyGrid]; 203 G4double Q2E[fNumberofEPoints][reducedEnergyGrid]; 204 G4double pZ[fNumberofZPoints] = {2.0,8.0,13.0,47.0,79.0,92.0}; 205 206 G4int i=0,j=0,k=0; // i=index for Z, j=index for E, k=index for K 207 //Interpolation in Z 208 for (i=0;i<fNumberofEPoints;i++) 209 { 210 for (j=0;j<fNumberofKPoints;j++) 211 { 212 G4PhysicsFreeVector* QQ1vector = 213 new G4PhysicsFreeVector(fNumberofZPoints,/*spline =*/true); 214 G4PhysicsFreeVector* QQ2vector = 215 new G4PhysicsFreeVector(fNumberofZPoints,/*spline =*/true); 216 217 //fill vectors 218 for (k=0;k<fNumberofZPoints;k++) 219 { 220 QQ1vector->PutValues(k,pZ[k],G4Log(fQQ1[k][i][j])); 221 QQ2vector->PutValues(k,pZ[k],fQQ2[k][i][j]); 222 } 223 //Filled: now calculate derivatives 224 QQ1vector->FillSecondDerivatives(); 225 QQ2vector->FillSecondDerivatives(); 226 227 Q1[i][j]= G4Exp(QQ1vector->Value(Zmat)); 228 Q2[i][j]=QQ2vector->Value(Zmat); 229 delete QQ1vector; 230 delete QQ2vector; 231 } 232 } 233 G4double pE[fNumberofEPoints] = {1.0e-03*MeV,5.0e-03*MeV,1.0e-02*MeV,5.0e-02*MeV, 234 1.0e-01*MeV,5.0e-01*MeV}; 235 G4double pK[fNumberofKPoints] = {0.0,0.6,0.8,0.95}; 236 G4double ppK[reducedEnergyGrid]; 237 238 for(i=0;i<reducedEnergyGrid;i++) 239 ppK[i]=((G4double) i) * 0.05; 240 241 242 for(i=0;i<fNumberofEPoints;i++) 243 betas[i]=std::sqrt(pE[i]*(pE[i]+2*electron_mass_c2))/(pE[i]+electron_mass_c2); 244 245 246 for (i=0;i<fNumberofEPoints;i++) 247 { 248 for (j=0;j<fNumberofKPoints;j++) 249 Q1[i][j]=Q1[i][j]/Zmat; 250 } 251 252 //Expanded table of distribution parameters 253 for (i=0;i<fNumberofEPoints;i++) 254 { 255 G4PhysicsFreeVector* Q1vector = new G4PhysicsFreeVector(fNumberofKPoints); 256 G4PhysicsFreeVector* Q2vector = new G4PhysicsFreeVector(fNumberofKPoints); 257 258 for (j=0;j<fNumberofKPoints;j++) 259 { 260 Q1vector->PutValues(j,pK[j],G4Log(Q1[i][j])); //logarithmic 261 Q2vector->PutValues(j,pK[j],Q2[i][j]); 262 } 263 264 for (j=0;j<reducedEnergyGrid;j++) 265 { 266 Q1E[i][j]=Q1vector->Value(ppK[j]); 267 Q2E[i][j]=Q2vector->Value(ppK[j]); 268 } 269 delete Q1vector; 270 delete Q2vector; 271 } 272 // 273 //TABLES to be stored 274 // 275 G4PhysicsTable* theTable1 = new G4PhysicsTable(); 276 G4PhysicsTable* theTable2 = new G4PhysicsTable(); 277 // the table will contain reducedEnergyGrid G4PhysicsFreeVectors with different 278 // values of k, 279 // Each of the G4PhysicsFreeVectors has a profile of 280 // y vs. E 281 // 282 //reserve space of the vectors. 283 for (j=0;j<reducedEnergyGrid;j++) 284 { 285 G4PhysicsFreeVector* thevec = new G4PhysicsFreeVector(fNumberofEPoints,/*spline=*/true); 286 theTable1->push_back(thevec); 287 G4PhysicsFreeVector* thevec2 = new G4PhysicsFreeVector(fNumberofEPoints,/*spline=*/true); 288 theTable2->push_back(thevec2); 289 } 290 291 for (j=0;j<reducedEnergyGrid;j++) 292 { 293 G4PhysicsFreeVector* thevec = (G4PhysicsFreeVector*) (*theTable1)[j]; 294 G4PhysicsFreeVector* thevec2 = (G4PhysicsFreeVector*) (*theTable2)[j]; 295 for (i=0;i<fNumberofEPoints;i++) 296 { 297 thevec->PutValues(i,betas[i],Q1E[i][j]); 298 thevec2->PutValues(i,betas[i],Q2E[i][j]); 299 } 300 //Vectors are filled: calculate derivatives 301 thevec->FillSecondDerivatives(); 302 thevec2->FillSecondDerivatives(); 303 } 304 305 if (fLorentzTables1 && fLorentzTables2) 306 { 307 fLorentzTables1->insert(std::make_pair(Zmat,theTable1)); 308 fLorentzTables2->insert(std::make_pair(Zmat,theTable2)); 309 } 310 else 311 { 312 G4ExceptionDescription ed; 313 ed << "Unable to create tables of Lorentz coefficients for " << G4endl; 314 ed << "<Z>= " << Zmat << " in G4PenelopeBremsstrahlungAngular" << G4endl; 315 delete theTable1; 316 delete theTable2; 317 G4Exception("G4PenelopeBremsstrahlungAngular::PrepareInterpolationTables()", 318 "em2005",FatalException,ed); 319 } 320 321 return; 322 } 323 324 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 325 326 G4ThreeVector& G4PenelopeBremsstrahlungAngular::SampleDirection(const G4DynamicParticle* dp, 327 G4double eGamma, 328 G4int, 329 const G4Material* material) 330 { 331 if (!material) 332 { 333 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 334 "em2040",FatalException,"The pointer to G4Material* is nullptr"); 335 return fLocalDirection; 336 } 337 338 //Retrieve the effective Z 339 G4double Zmat = 0; 340 341 //The model might be initialized incorrectly, if the angular generator is not used with the 342 //G4PenelopeBremsstrahungModel: make sure it works also with other models. 343 if (!fEffectiveZSq) 344 { 345 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 346 "em2040",JustWarning,"EffectiveZSq table does not exist: create it"); 347 PrepareTables(material,false); 348 //return fLocalDirection; 349 } 350 351 //found in the table: return it 352 if (fEffectiveZSq->count(material)) 353 Zmat = fEffectiveZSq->find(material)->second; 354 else //this can happen in unit tests or when the AngModel is coupled with bremsstrahlunh 355 //models other than G4PenelopeBremsstrahungModel 356 { 357 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 358 "em2040",JustWarning,"Material not found in the effectiveZ table"); 359 PrepareTables(material,false); 360 Zmat = fEffectiveZSq->find(material)->second; 361 // return fLocalDirection; 362 } 363 364 if (fVerbosityLevel > 0) 365 { 366 G4cout << "Effective <Z> for material : " << material->GetName() << 367 " = " << Zmat << G4endl; 368 } 369 370 G4double ePrimary = dp->GetKineticEnergy(); 371 372 G4double beta = std::sqrt(ePrimary*(ePrimary+2*electron_mass_c2))/ 373 (ePrimary+electron_mass_c2); 374 G4double cdt = 0; 375 G4double sinTheta = 0; 376 G4double phi = 0; 377 378 //Use a pure dipole distribution for energy above 500 keV 379 if (ePrimary > 500*keV) 380 { 381 cdt = 2.0*G4UniformRand() - 1.0; 382 if (G4UniformRand() > 0.75) 383 { 384 if (cdt<0) 385 cdt = -1.0*std::pow(-cdt,1./3.); 386 else 387 cdt = std::pow(cdt,1./3.); 388 } 389 cdt = (cdt+beta)/(1.0+beta*cdt); 390 //Get primary kinematics 391 sinTheta = std::sqrt(1. - cdt*cdt); 392 phi = twopi * G4UniformRand(); 393 fLocalDirection.set(sinTheta* std::cos(phi), 394 sinTheta* std::sin(phi), 395 cdt); 396 //rotate 397 fLocalDirection.rotateUz(dp->GetMomentumDirection()); 398 //return 399 return fLocalDirection; 400 } 401 402 if (!(fLorentzTables1->count(Zmat)) || !(fLorentzTables2->count(Zmat))) 403 { 404 G4ExceptionDescription ed; 405 ed << "Unable to retrieve Lorentz tables for Z= " << Zmat << G4endl; 406 G4Exception("G4PenelopeBremsstrahlungAngular::SampleDirection()", 407 "em2006",FatalException,ed); 408 } 409 410 //retrieve actual tables 411 const G4PhysicsTable* theTable1 = fLorentzTables1->find(Zmat)->second; 412 const G4PhysicsTable* theTable2 = fLorentzTables2->find(Zmat)->second; 413 414 G4double RK=20.0*eGamma/ePrimary; 415 G4int ik=std::min((G4int) RK,19); 416 417 G4double P10=0,P11=0,P1=0; 418 G4double P20=0,P21=0,P2=0; 419 420 //First coefficient 421 const G4PhysicsFreeVector* v1 = (G4PhysicsFreeVector*) (*theTable1)[ik]; 422 const G4PhysicsFreeVector* v2 = (G4PhysicsFreeVector*) (*theTable1)[ik+1]; 423 P10 = v1->Value(beta); 424 P11 = v2->Value(beta); 425 P1=P10+(RK-(G4double) ik)*(P11-P10); 426 427 //Second coefficient 428 const G4PhysicsFreeVector* v3 = (G4PhysicsFreeVector*) (*theTable2)[ik]; 429 const G4PhysicsFreeVector* v4 = (G4PhysicsFreeVector*) (*theTable2)[ik+1]; 430 P20=v3->Value(beta); 431 P21=v4->Value(beta); 432 P2=P20+(RK-(G4double) ik)*(P21-P20); 433 434 //Sampling from the Lorenz-trasformed dipole distributions 435 P1=std::min(G4Exp(P1)/beta,1.0); 436 G4double betap = std::min(std::max(beta*(1.0+P2/beta),0.0),0.9999); 437 438 G4double testf=0; 439 440 if (G4UniformRand() < P1) 441 { 442 do{ 443 cdt = 2.0*G4UniformRand()-1.0; 444 testf=2.0*G4UniformRand()-(1.0+cdt*cdt); 445 }while(testf>0); 446 } 447 else 448 { 449 do{ 450 cdt = 2.0*G4UniformRand()-1.0; 451 testf=G4UniformRand()-(1.0-cdt*cdt); 452 }while(testf>0); 453 } 454 cdt = (cdt+betap)/(1.0+betap*cdt); 455 456 //Get primary kinematics 457 sinTheta = std::sqrt(1. - cdt*cdt); 458 phi = twopi * G4UniformRand(); 459 fLocalDirection.set(sinTheta* std::cos(phi), 460 sinTheta* std::sin(phi), 461 cdt); 462 //rotate 463 fLocalDirection.rotateUz(dp->GetMomentumDirection()); 464 //return 465 return fLocalDirection; 466 467 } 468 469 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 470 471 G4double G4PenelopeBremsstrahlungAngular::CalculateEffectiveZ(const G4Material* material) 472 { 473 if (!fEffectiveZSq) 474 fEffectiveZSq = new std::map<const G4Material*,G4double>; 475 476 //Already exists: return it 477 if (fEffectiveZSq->count(material)) 478 return fEffectiveZSq->find(material)->second; 479 480 //Helper for the calculation 481 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>; 482 G4int nElements = (G4int)material->GetNumberOfElements(); 483 const G4ElementVector* elementVector = material->GetElementVector(); 484 const G4double* fractionVector = material->GetFractionVector(); 485 for (G4int i=0;i<nElements;++i) 486 { 487 G4double fraction = fractionVector[i]; 488 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole); 489 StechiometricFactors->push_back(fraction/atomicWeigth); 490 } 491 //Find max 492 G4double MaxStechiometricFactor = 0.; 493 for (G4int i=0;i<nElements;++i) 494 { 495 if ((*StechiometricFactors)[i] > MaxStechiometricFactor) 496 MaxStechiometricFactor = (*StechiometricFactors)[i]; 497 } 498 //Normalize 499 for (G4int i=0;i<nElements;++i) 500 (*StechiometricFactors)[i] /= MaxStechiometricFactor; 501 502 G4double sumz2 = 0; 503 G4double sums = 0; 504 for (G4int i=0;i<nElements;++i) 505 { 506 G4double Z = (*elementVector)[i]->GetZ(); 507 sumz2 += (*StechiometricFactors)[i]*Z*Z; 508 sums += (*StechiometricFactors)[i]; 509 } 510 delete StechiometricFactors; 511 512 G4double ZBR = std::sqrt(sumz2/sums); 513 fEffectiveZSq->insert(std::make_pair(material,ZBR)); 514 515 return ZBR; 516 } 517