Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4MicroElecLOPhononModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // G4MicroElecLOPhononModel.cc, 
 28 //               2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 
 29 //                          Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
 30 //                          M. Raine and D. Lambert are with CEA [a]
 31 //
 32 // A part of this work has been funded by the French space agency(CNES[c])
 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France
 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
 36 //
 37 // Based on the following publications
 38 //
 39 // - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
 40 //   Electron emission yield for low energy electrons: 
 41 //   Monte Carlo simulation and experimental comparison for Al, Ag, and Si
 42 //   Journal of Applied Physics 121 (2017) 215107. 
 43 //   https://doi.org/10.1063/1.4984761
 44 //
 45 // - P. Caron,
 46 //   Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
 47 //   PHD, 16th October 2019
 48 //
 49 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 
 50 //   Geant4 physics processes for microdosimetry and secondary electron emission simulation : 
 51 //   Extension of MicroElec to very low energies and new materials
 52 //   NIM B, 2020, in review.
 53 //
 54 ////////////////////////////////////////////////////////////////////////
 55 
 56 #include "G4MicroElecLOPhononModel.hh"
 57 #include "G4SystemOfUnits.hh"
 58 #include "G4PhysicalConstants.hh"
 59 
 60 G4MicroElecLOPhononModel::G4MicroElecLOPhononModel(const G4ParticleDefinition*,
 61                                                    const G4String& nam) 
 62   : G4VEmModel(nam),isInitialised(false)
 63 {
 64   G4cout << "Phonon model is constructed " << G4endl
 65          << "Phonon Energy = " << phononEnergy / eV << " eV  "<< G4endl;
 66 }
 67 
 68 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 69 
 70 void G4MicroElecLOPhononModel::Initialise(const G4ParticleDefinition*,
 71                   const G4DataVector& /*cuts*/)
 72 {
 73   if (isInitialised) { return; }
 74   fParticleChangeForGamma = GetParticleChangeForGamma();
 75   isInitialised = true;
 76 }
 77 
 78 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 79 
 80 G4double G4MicroElecLOPhononModel::
 81 CrossSectionPerVolume(const G4Material* material,
 82                       const G4ParticleDefinition* p,
 83                             G4double ekin,
 84                             G4double, G4double)
 85 {
 86   const G4double e = CLHEP::eplus / CLHEP::coulomb;
 87   const G4double m0 = CLHEP::electron_mass_c2 / (CLHEP::c_squared*CLHEP::kg);
 88   const G4double h = CLHEP::hbar_Planck * CLHEP::s/ (CLHEP::m2*CLHEP::kg);
 89   const G4double eps0 = CLHEP::epsilon0 * CLHEP::m/ (CLHEP::farad);
 90   const G4double kb = CLHEP::k_Boltzmann * CLHEP::kelvin/ CLHEP::joule;
 91   const G4double T = 300;
 92   G4double eps = 9;
 93   G4double einf = 3;
 94 
 95   const G4DataVector cuts;
 96   Initialise(p, cuts);
 97 
 98   if (material->GetName() != "G4_SILICON_DIOXIDE"
 99    && material->GetName() != "G4_ALUMINUM_OXIDE"
100    && material->GetName() != "G4_BORON_NITRIDE")
101   {
102     return 1 / DBL_MAX;
103   }
104 
105   G4double E =(ekin/eV)*e;
106 
107   if (material->GetName() == "G4_ALUMINUM_OXIDE")
108   {
109     eps = 9;
110     einf = 3;
111     phononEnergy = 0.1*eV;
112   }
113   if (material->GetName() == "G4_SILICON_DIOXIDE")
114   {
115     eps = 3.84;
116     einf = 2.25;  
117     phononEnergy = (0.75*0.153+0.25*0.063 )* eV;
118   }
119 
120   // Nuclear Instruments and Methods in Physics Research Section B:
121   // Beam Interactions with Materials and Atoms
122   // Volume 454, 1 September 2019, Pages 14 - 22
123   // Nuclear Instruments and Methods in Physics Research Section B:
124   // Beam Interactions with Materials and Atoms
125   // Monte Carlo modeling of low - energy electron - induced secondary
126   // electron emission yields in micro - architected boron nitride surfaces
127 
128   if (material->GetName() == "G4_BORON_NITRIDE")
129   {
130     eps = 7.1;
131     einf = 4.5;
132     phononEnergy = 0.17 * eV;
133   }
134 
135   G4double hw = (phononEnergy / eV) * e;
136   G4double n = 1.0 / (std::exp(hw / (kb*T)) - 1); //Phonon distribution
137 
138   if (absor)  // Absorption
139   {
140     Eprim = E + hw;
141     signe = -1;
142   }
143   else        // Emission
144   {
145     Eprim = E - hw;
146     signe = +1;
147   }
148 
149   G4double racine = std::sqrt(1 + ((-signe*hw) / E));
150   G4double P = (std::pow(e, 2) / (4 * pi*eps0*h*h)) * (n + 0.5 + signe*0.5) * ((1 / einf) - (1 / eps)) * std::sqrt(m0 / (2 * E)) *hw* std::log((1 + racine) / (signe * 1 + ((-signe)*racine)));
151   G4double MFP = (std::sqrt(2 * E / m0) / P)*m;
152 
153   if (material->GetName() == "G4_SILICON_DIOXIDE") { return 2 / MFP; }
154   return 1/(MFP);
155   // correction CI 12/1/2023 add          
156 }
157 
158 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
159 
160 void G4MicroElecLOPhononModel::
161 SampleSecondaries(std::vector<G4DynamicParticle*>*,
162                   const G4MaterialCutsCouple*,
163                   const G4DynamicParticle* aDynamicElectron,
164                   G4double, G4double)
165 {
166   G4double E = aDynamicElectron->GetKineticEnergy();
167   Eprim = (absor) ? E + phononEnergy : E - phononEnergy;   
168 
169   G4double rand = G4UniformRand();
170   G4double B = (E + Eprim + 2 * std::sqrt(E*Eprim))
171              / (E + Eprim - 2 * std::sqrt(E*Eprim));
172   G4double cosTheta = ((E + Eprim) / (2 * std::sqrt(E*Eprim)))
173                     * (1 - std::pow(B, rand)) + std::pow(B, rand);
174   if(Interband)
175   {
176     cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
177   }
178   G4double phi = twopi * G4UniformRand();
179   G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
180   G4ThreeVector xVers = zVers.orthogonal();
181   G4ThreeVector yVers = zVers.cross(xVers);
182   
183   G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
184   G4double yDir = xDir;
185   xDir *= std::cos(phi);
186   yDir *= std::sin(phi);
187   
188   G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
189   
190   fParticleChangeForGamma->ProposeMomentumDirection(zPrimeVers.unit());
191   fParticleChangeForGamma->SetProposedKineticEnergy(Eprim);
192 }
193 
194 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
195