Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4AtomicDeexcitation.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 //
 28 // Authors: Elena Guardincerri (Elena.Guardincerri@ge.infn.it)
 29 //          Alfonso Mantero (Alfonso.Mantero@ge.infn.it)
 30 //
 31 // History:
 32 // -----------
 33 //  
 34 //  16 Sept 2001  First committed to cvs
 35 //  12 Sep  2003  Bug in auger production fixed
 36 //
 37 // -------------------------------------------------------------------
 38 
 39 #include "G4AtomicDeexcitation.hh"
 40 #include "Randomize.hh"
 41 #include "G4PhysicalConstants.hh"
 42 #include "G4SystemOfUnits.hh"
 43 #include "G4Gamma.hh"
 44 #include "G4Electron.hh"
 45 #include "G4AtomicTransitionManager.hh"
 46 #include "G4FluoTransition.hh"
 47 
 48 G4AtomicDeexcitation::G4AtomicDeexcitation():
 49   minGammaEnergy(100.*eV),
 50   minElectronEnergy(100.*eV),
 51   fAuger(false)
 52 {
 53 
 54   G4cout << " ********************************************************** " << G4endl; 
 55   G4cout << " *                  W A R N I N G ! ! !                   * " << G4endl;
 56   G4cout << " ********************************************************** " << G4endl;
 57   G4cout << " *                                                        * " << G4endl; 
 58   G4cout << " *  Class G4AtomicDeexcitation is obsolete. It has been   * " << G4endl;
 59   G4cout << " * discontinued and is going to be removed by next Geant4 * " << G4endl; 
 60   G4cout << " *     release please migrate to G4UAtomDeexcitation.     * " << G4endl;
 61   G4cout << " *                                                        * " << G4endl;
 62   G4cout << " ********************************************************** " << G4endl; 
 63 
 64   augerVacancyId=0;
 65   newShellId=0;
 66 }
 67 
 68 G4AtomicDeexcitation::~G4AtomicDeexcitation()
 69 {}
 70 
 71 std::vector<G4DynamicParticle*>* G4AtomicDeexcitation::GenerateParticles(G4int Z,G4int givenShellId)
 72 { 
 73 
 74   std::vector<G4DynamicParticle*>* vectorOfParticles;
 75   vectorOfParticles = new std::vector<G4DynamicParticle*>;
 76 
 77   G4DynamicParticle* aParticle = nullptr;
 78   G4int provShellId = 0;
 79   G4int counter = 0;
 80   
 81   // The aim of this loop is to generate more than one fluorecence photon 
 82   // from the same ionizing event 
 83   do
 84     {
 85       if (counter == 0) 
 86   // First call to GenerateParticles(...):
 87   // givenShellId is given by the process
 88   {
 89     provShellId = SelectTypeOfTransition(Z, givenShellId);
 90     
 91     if  ( provShellId >0) 
 92       {
 93         aParticle = GenerateFluorescence(Z,givenShellId,provShellId);  
 94       }
 95     else if ( provShellId == -1)
 96       {
 97         aParticle = GenerateAuger(Z, givenShellId);
 98       }
 99     else
100       {
101         G4Exception("G4AtomicDeexcitation::Constructor", "de0002", JustWarning, "Transition selection invalid, energy local deposited");
102       }
103   }
104       else 
105   // Following calls to GenerateParticles(...):
106   // newShellId is given by GenerateFluorescence(...)
107   {
108     provShellId = SelectTypeOfTransition(Z,newShellId);
109     if  (provShellId >0)
110       {
111         aParticle = GenerateFluorescence(Z,newShellId,provShellId);
112       }
113     else if ( provShellId == -1)
114       {
115         aParticle = GenerateAuger(Z, newShellId);
116       }
117     else
118       {
119         G4Exception("G4AtomicDeexcitation::constructor", "de0002", JustWarning, "Transition selection invalid, energy local deposited" );
120       }
121   }
122       counter++;
123       if (aParticle != nullptr) {vectorOfParticles->push_back(aParticle);}
124       else {provShellId = -2;}
125     }
126   
127   // Look this in a particular way: only one auger emitted! // ????
128   while (provShellId > -2); 
129 
130   // debug  
131   // if (vectorOfParticles->size() > 0) {
132   //   G4cout << " DEEXCITATION!" << G4endl;
133   // }
134 
135   return vectorOfParticles;
136 }
137 
138 G4int G4AtomicDeexcitation::SelectTypeOfTransition(G4int Z, G4int shellId)
139 {
140   if (shellId <=0 ) 
141     {G4Exception("G4AtomicDeexcitation::SelectTypeOfTransition()","de0002", JustWarning ,"zero or negative shellId");}
142 
143   //G4bool fluoTransitionFoundFlag = false;
144   
145   const G4AtomicTransitionManager*  transitionManager = 
146         G4AtomicTransitionManager::Instance();
147   G4int provShellId = -1;
148   G4int shellNum = 0;
149   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);  
150   
151   const G4FluoTransition* refShell = transitionManager->ReachableShell(Z,maxNumOfShells-1);
152 
153   // This loop gives shellNum the value of the index of shellId
154   // in the vector storing the list of the shells reachable through
155   // a radiative transition
156   if ( shellId <= refShell->FinalShellId())
157     {
158       while (shellId != transitionManager->ReachableShell(Z,shellNum)->FinalShellId())
159   {
160     if(shellNum ==maxNumOfShells-1)
161       {
162         break;
163       }
164     shellNum++;
165   }
166       G4int transProb = 0; //AM change 29/6/07 was 1
167    
168       G4double partialProb = G4UniformRand();      
169       G4double partSum = 0;
170       const G4FluoTransition* aShell = transitionManager->ReachableShell(Z,shellNum);      
171       G4int trSize = (G4int)(aShell->TransitionProbabilities()).size();
172     
173       // Loop over the shells wich can provide an electron for a 
174       // radiative transition towards shellId:
175       // in every loop the partial sum of the first transProb shells
176       // is calculated and compared with a random number [0,1].
177       // If the partial sum is greater, the shell whose index is transProb
178       // is chosen as the starting shell for a radiative transition
179       // and its identity is returned
180       // Else, terminateded the loop, -1 is returned
181       while(transProb < trSize){
182   
183    partSum += aShell->TransitionProbability(transProb);
184 
185    if(partialProb <= partSum)
186      {
187        provShellId = aShell->OriginatingShellId(transProb);
188        //fluoTransitionFoundFlag = true;
189 
190        break;
191      }
192    transProb++;
193       }
194 
195       // here provShellId is the right one or is -1.
196       // if -1, the control is passed to the Auger generation part of the package 
197     }
198   else 
199     provShellId = -1;
200 
201   return provShellId;
202 }
203 
204 G4DynamicParticle* G4AtomicDeexcitation::GenerateFluorescence(G4int Z, 
205                     G4int shellId,
206                     G4int provShellId )
207 { 
208   const G4AtomicTransitionManager*  transitionManager = G4AtomicTransitionManager::Instance();
209   //  G4int provenienceShell = provShellId;
210 
211   //isotropic angular distribution for the outcoming photon
212   G4double newcosTh = 1.-2.*G4UniformRand();
213   G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
214   G4double newPhi = twopi*G4UniformRand();
215   
216   G4double xDir =  newsinTh*std::sin(newPhi);
217   G4double yDir = newsinTh*std::cos(newPhi);
218   G4double zDir = newcosTh;
219   
220   G4ThreeVector newGammaDirection(xDir,yDir,zDir);
221   
222   G4int shellNum = 0;
223   G4int maxNumOfShells = transitionManager->NumberOfReachableShells(Z);
224   
225   // find the index of the shell named shellId
226   while (shellId != transitionManager->
227    ReachableShell(Z,shellNum)->FinalShellId())
228     {
229       if(shellNum == maxNumOfShells-1)
230   {
231     break;
232   }
233       shellNum++;
234     }
235   // number of shell from wich an electron can reach shellId
236   G4int transitionSize = (G4int)transitionManager->
237     ReachableShell(Z,shellNum)->OriginatingShellIds().size();
238   
239   G4int index = 0;
240   
241   // find the index of the shell named provShellId in the vector
242   // storing the shells from which shellId can be reached 
243   while (provShellId != transitionManager->
244    ReachableShell(Z,shellNum)->OriginatingShellId(index))
245     {
246       if(index ==  transitionSize-1)
247   {
248     break;
249   }
250       index++;
251     }
252   // energy of the gamma leaving provShellId for shellId
253   G4double transitionEnergy = transitionManager->
254     ReachableShell(Z,shellNum)->TransitionEnergy(index);
255   
256   // This is the shell where the new vacancy is: it is the same
257   // shell where the electron came from
258   newShellId = transitionManager->
259     ReachableShell(Z,shellNum)->OriginatingShellId(index);
260   
261   G4DynamicParticle* newPart = new G4DynamicParticle(G4Gamma::Gamma(), 
262                  newGammaDirection,
263                  transitionEnergy);
264   return newPart;
265 }
266 
267 G4DynamicParticle* G4AtomicDeexcitation::GenerateAuger(G4int Z, G4int shellId)
268 {
269   if(!fAuger) return 0;
270   
271   const G4AtomicTransitionManager*  transitionManager = 
272         G4AtomicTransitionManager::Instance();
273 
274   if (shellId <=0 ) 
275     {G4Exception("G4AtomicDeexcitation::GenerateAuger()","de0002", JustWarning ,"zero or negative shellId");}
276   
277   // G4int provShellId = -1;
278   G4int maxNumOfShells = transitionManager->NumberOfReachableAugerShells(Z);  
279   
280   const G4AugerTransition* refAugerTransition = 
281         transitionManager->ReachableAugerShell(Z,maxNumOfShells-1);
282 
283 
284   // This loop gives to shellNum the value of the index of shellId
285   // in the vector storing the list of the vacancies in the variuos shells 
286   // that can originate a NON-radiative transition
287   G4int shellNum = 0;
288 
289   if ( shellId <= refAugerTransition->FinalShellId() ) 
290     //"FinalShellId" is final from the point of view of the elctron who makes the transition, 
291     // being the Id of the shell in which there is a vacancy
292     {
293       G4int pippo = transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId();
294       if (shellId  != pippo ) {
295   do { 
296     shellNum++;
297     if(shellNum == maxNumOfShells)
298       {
299 
300         //G4Exception("G4AtomicDeexcitation: No Auger transition found");
301         return 0;
302       }
303   }
304   while (shellId != (transitionManager->ReachableAugerShell(Z,shellNum)->FinalShellId()) ) ;
305       }
306 
307       G4int transitionLoopShellIndex = 0;      
308       G4double partSum = 0;
309       const G4AugerTransition* anAugerTransition = 
310             transitionManager->ReachableAugerShell(Z,shellNum);
311 
312       G4int transitionSize = (G4int)
313             (anAugerTransition->TransitionOriginatingShellIds())->size();
314       while (transitionLoopShellIndex < transitionSize) {
315 
316         std::vector<G4int>::const_iterator pos = 
317                anAugerTransition->TransitionOriginatingShellIds()->begin();
318 
319         G4int transitionLoopShellId = *(pos+transitionLoopShellIndex);
320         G4int numberOfPossibleAuger = (G4int)
321               (anAugerTransition->AugerTransitionProbabilities(transitionLoopShellId))->size();
322         G4int augerIndex = 0;
323 
324   if (augerIndex < numberOfPossibleAuger) {   
325     do 
326       {
327         G4double thisProb = anAugerTransition->AugerTransitionProbability(augerIndex, 
328                     transitionLoopShellId);
329         partSum += thisProb;
330         augerIndex++;
331         
332       } while (augerIndex < numberOfPossibleAuger);
333     }
334         transitionLoopShellIndex++;
335       }
336       
337 
338       // Now we have the entire probability of an auger transition for the vacancy 
339       // located in shellNum (index of shellId) 
340       G4double totalVacancyAugerProbability = partSum;
341 
342       //And now we start to select the right auger transition and emission
343       G4int transitionRandomShellIndex = 0;
344       G4int transitionRandomShellId = 1;
345       G4int augerIndex = 0;
346       partSum = 0; 
347       G4double partialProb = G4UniformRand();
348       // G4int augerOriginatingShellId = 0;
349       
350       G4int numberOfPossibleAuger = 0;
351       
352       G4bool foundFlag = false;
353 
354       while (transitionRandomShellIndex < transitionSize) {
355         std::vector<G4int>::const_iterator pos = 
356                anAugerTransition->TransitionOriginatingShellIds()->begin();
357 
358         transitionRandomShellId = *(pos+transitionRandomShellIndex);
359         
360   augerIndex = 0;
361   numberOfPossibleAuger = (G4int)(anAugerTransition-> 
362          AugerTransitionProbabilities(transitionRandomShellId))->size();
363 
364         while (augerIndex < numberOfPossibleAuger) {
365     G4double thisProb =anAugerTransition->AugerTransitionProbability(augerIndex, 
366                      transitionRandomShellId);
367 
368           partSum += thisProb;
369           
370           if (partSum >= (partialProb*totalVacancyAugerProbability) ) { // was /
371       foundFlag = true;
372       break;
373     }
374           augerIndex++;
375         }
376         if (partSum >= (partialProb*totalVacancyAugerProbability) ) {break;} // was /
377         transitionRandomShellIndex++;
378       }
379 
380       // Now we have the index of the shell from wich comes the auger electron (augerIndex), 
381       // and the id of the shell, from which the transition e- come (transitionRandomShellid)
382       // If no Transition has been found, 0 is returned.  
383 
384       if (!foundFlag) {return 0;}      
385       
386       // Isotropic angular distribution for the outcoming e-
387       G4double newcosTh = 1.-2.*G4UniformRand();
388       G4double  newsinTh = std::sqrt(1.-newcosTh*newcosTh);
389       G4double newPhi = twopi*G4UniformRand();
390       
391       G4double xDir =  newsinTh*std::sin(newPhi);
392       G4double yDir = newsinTh*std::cos(newPhi);
393       G4double zDir = newcosTh;
394       
395       G4ThreeVector newElectronDirection(xDir,yDir,zDir);
396       
397       // energy of the auger electron emitted
398           
399       G4double transitionEnergy = anAugerTransition->AugerTransitionEnergy(augerIndex, transitionRandomShellId);
400       /*
401   G4cout << "AUger TransitionId " << anAugerTransition->FinalShellId() << G4endl;
402   G4cout << "augerIndex: " << augerIndex << G4endl;
403   G4cout << "transitionShellId: " << transitionRandomShellId << G4endl;
404       */
405       
406       // This is the shell where the new vacancy is: it is the same
407       // shell where the electron came from
408       newShellId = transitionRandomShellId;
409      
410       G4DynamicParticle* newPart = new G4DynamicParticle(G4Electron::Electron(), 
411                newElectronDirection,
412                transitionEnergy);
413       return newPart;
414     }
415   else 
416     {
417       //G4Exception("G4AtomicDeexcitation: no auger transition found");
418       return 0;
419     }
420 }
421 
422 void G4AtomicDeexcitation::SetCutForSecondaryPhotons(G4double cut)
423 {
424   minGammaEnergy = cut;
425 }
426 
427 void G4AtomicDeexcitation::SetCutForAugerElectrons(G4double cut)
428 {
429   minElectronEnergy = cut;
430 }
431 
432 void G4AtomicDeexcitation::ActivateAugerElectronProduction(G4bool val)
433 {
434   fAuger = val;
435 }
436 
437 
438 
439 
440 
441 
442 
443