Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/lowenergy/src/G4ANSTOecpssrMixsModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // History:
 27 // -----------
 28 //  10 Nov 2021   S. Guatelli & S. Bakr, Wollongong University - 1st implementation
 29 //
 30 // Class description
 31 // ----------------
 32 //  Computation of K, L & M shell ECPSSR ionisation cross sections for protons and alphas
 33 //  Based on the work of
 34 //  - S. Bakr et al. (2021) NIM B, 507:11-19.
 35 //  - S. Bakr et al (2018), NIMB B, 436: 285-291. 
 36 // ---------------------------------------------------------------------------------------
 37 
 38 #include <fstream>
 39 #include <iomanip>
 40 
 41 #include "globals.hh"
 42 #include "G4ios.hh"
 43 #include "G4SystemOfUnits.hh"
 44 
 45 #include "G4EMDataSet.hh"
 46 #include "G4LinInterpolation.hh"
 47 #include "G4Proton.hh"
 48 #include "G4Alpha.hh"
 49 
 50 #include "G4ANSTOecpssrMixsModel.hh"
 51 
 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
 53 
 54 G4ANSTOecpssrMixsModel::G4ANSTOecpssrMixsModel()
 55 {
 56   G4cout << "Using ANSTO M Cross Sections! "<< G4endl;
 57 
 58   interpolation = new G4LinInterpolation();
 59 
 60   for (G4int i=67; i<93; i++)
 61   {
 62       protonM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
 63       protonM1DataSetMap[i]->LoadData("pixe_ANSTO/proton/m1-");
 64 
 65       protonM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
 66       protonM2DataSetMap[i]->LoadData("pixe_ANSTO/proton/m2-");
 67 
 68       protonM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
 69       protonM3DataSetMap[i]->LoadData("pixe_ANSTO/proton/m3-");
 70 
 71       protonM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
 72       protonM4DataSetMap[i]->LoadData("pixe_ANSTO/proton/m4-");
 73 
 74       protonM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
 75       protonM5DataSetMap[i]->LoadData("pixe_ANSTO/proton/m5-");
 76   }
 77 
 78   protonMiXsVector.push_back(protonM1DataSetMap);
 79   protonMiXsVector.push_back(protonM2DataSetMap);
 80   protonMiXsVector.push_back(protonM3DataSetMap);
 81   protonMiXsVector.push_back(protonM4DataSetMap);
 82   protonMiXsVector.push_back(protonM5DataSetMap);
 83 
 84 
 85   for (G4int i=67; i<93; i++)
 86   {
 87       alphaM1DataSetMap[i] = new G4EMDataSet(i,interpolation);
 88       alphaM1DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m1-");
 89 
 90       alphaM2DataSetMap[i] = new G4EMDataSet(i,interpolation);
 91       alphaM2DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m2-");
 92 
 93       alphaM3DataSetMap[i] = new G4EMDataSet(i,interpolation);
 94       alphaM3DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m3-");
 95 
 96       alphaM4DataSetMap[i] = new G4EMDataSet(i,interpolation);
 97       alphaM4DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m4-");
 98 
 99       alphaM5DataSetMap[i] = new G4EMDataSet(i,interpolation);
100       alphaM5DataSetMap[i]->LoadData("pixe_ANSTO/alpha/m5-");
101   }
102 
103   alphaMiXsVector.push_back(alphaM1DataSetMap);
104   alphaMiXsVector.push_back(alphaM2DataSetMap);
105   alphaMiXsVector.push_back(alphaM3DataSetMap);
106   alphaMiXsVector.push_back(alphaM4DataSetMap);
107   alphaMiXsVector.push_back(alphaM5DataSetMap);
108 }
109 
110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111 
112 G4ANSTOecpssrMixsModel::~G4ANSTOecpssrMixsModel()
113 {
114   protonM1DataSetMap.clear();
115   alphaM1DataSetMap.clear();
116 
117   protonM2DataSetMap.clear();
118   alphaM2DataSetMap.clear();
119 
120   protonM3DataSetMap.clear();
121   alphaM3DataSetMap.clear();
122 
123   protonM4DataSetMap.clear();
124   alphaM4DataSetMap.clear();
125 
126   protonM5DataSetMap.clear();
127   alphaM5DataSetMap.clear();
128 
129   delete interpolation;
130 }
131 
132 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
133 
134 G4double G4ANSTOecpssrMixsModel::CalculateMiCrossSection(G4int zTarget,G4double massIncident, G4double energyIncident, G4int mShellId)
135 {
136   G4Proton* aProton = G4Proton::Proton();
137   G4Alpha* aAlpha = G4Alpha::Alpha();
138   G4double sigma = 0;
139   G4int mShellIndex = mShellId -1;
140 
141   if (massIncident == aProton->GetPDGMass())
142      {
143      if (energyIncident > 0.2*MeV && energyIncident < 5.*MeV && zTarget < 93 && zTarget > 66) {
144 
145       sigma = protonMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
146         if (sigma !=0 && energyIncident > protonMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
147         }
148      }
149      
150     else if (massIncident == aAlpha->GetPDGMass())
151            {
152             if (energyIncident > 0.2*MeV && energyIncident < 10.*MeV && zTarget < 93 && zTarget > 66) {
153 
154             sigma = alphaMiXsVector[mShellIndex][zTarget]->FindValue(energyIncident/MeV);
155             if (sigma !=0 && energyIncident > alphaMiXsVector[mShellIndex][zTarget]->GetEnergies(0).back()*MeV) return 0.;
156                 }
157            }
158     
159     else
160       {
161         sigma = 0.;
162       }
163 
164 
165   // sigma is in internal units: it has been converted from
166   // the input file in barns bt the EmDataset
167   return sigma;
168 }
169 
170 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171 
172 G4double G4ANSTOecpssrMixsModel::CalculateM1CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
173 {
174 
175   // mShellId
176   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 1);
177 
178 }
179 
180 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
181 
182 G4double G4ANSTOecpssrMixsModel::CalculateM2CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
183 {
184 
185   // mShellId
186   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 2);
187 
188   /*
189 
190   G4Proton* aProton = G4Proton::Proton();
191   G4Alpha* aAlpha = G4Alpha::Alpha();
192   G4double sigma = 0;
193 
194   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
195 
196     if (massIncident == aProton->GetPDGMass())
197       {
198   sigma = protonM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
199         if (sigma !=0 && energyIncident > protonM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
200       }
201     else if (massIncident == aAlpha->GetPDGMass())
202       {
203         sigma = alphaM2DataSetMap[zTarget]->FindValue(energyIncident/MeV);
204         if (sigma !=0 && energyIncident > alphaM2DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
205       }
206     else
207       {
208   sigma = 0.;
209       }
210   }
211 
212   // sigma is in internal units: it has been converted from
213   // the input file in barns bt the EmDataset
214   return sigma;
215   */
216 }
217 
218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
219 
220 G4double G4ANSTOecpssrMixsModel::CalculateM3CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
221 {
222 
223   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 3);
224   /*
225 
226 
227   G4Proton* aProton = G4Proton::Proton();
228   G4Alpha* aAlpha = G4Alpha::Alpha();
229   G4double sigma = 0;
230 
231   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
232 
233     if (massIncident == aProton->GetPDGMass())
234       {
235   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
236         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
237       }
238     else if (massIncident == aAlpha->GetPDGMass())
239       {
240         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
241         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
242       }
243     else
244       {
245   sigma = 0.;
246       }
247   }
248 
249   // sigma is in internal units: it has been converted from
250   // the input file in barns bt the EmDataset
251   return sigma;
252   */
253 }
254 
255 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256 
257 G4double G4ANSTOecpssrMixsModel::CalculateM4CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
258 {
259 
260   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 4);
261   /*
262   G4Proton* aProton = G4Proton::Proton();
263   G4Alpha* aAlpha = G4Alpha::Alpha();
264   G4double sigma = 0;
265 
266   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
267 
268     if (massIncident == aProton->GetPDGMass())
269       {
270   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
271         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
272       }
273     else if (massIncident == aAlpha->GetPDGMass())
274       {
275         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
276         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
277       }
278     else
279       {
280   sigma = 0.;
281       }
282   }
283 
284   // sigma is in internal units: it has been converted from
285   // the input file in barns bt the EmDataset
286   return sigma;
287   */
288 }
289 
290 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
291 
292 G4double G4ANSTOecpssrMixsModel::CalculateM5CrossSection(G4int zTarget,G4double massIncident, G4double energyIncident)
293 {
294 
295   return  CalculateMiCrossSection (zTarget, massIncident, energyIncident, 5);
296   /*
297   G4Proton* aProton = G4Proton::Proton();
298   G4Alpha* aAlpha = G4Alpha::Alpha();
299   G4double sigma = 0;
300 
301   if (energyIncident > 0.1*MeV && energyIncident < 10*MeV && zTarget < 93 && zTarget > 61) {
302 
303     if (massIncident == aProton->GetPDGMass())
304       {
305   sigma = protonM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
306         if (sigma !=0 && energyIncident > protonM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
307       }
308     else if (massIncident == aAlpha->GetPDGMass())
309       {
310         sigma = alphaM3DataSetMap[zTarget]->FindValue(energyIncident/MeV);
311         if (sigma !=0 && energyIncident > alphaM3DataSetMap[zTarget]->GetEnergies(0).back()*MeV) return 0.;
312       }
313     else
314       {
315   sigma = 0.;
316       }
317   }
318 
319   // sigma is in internal units: it has been converted from
320   // the input file in barns bt the EmDataset
321   return sigma;
322   */
323 }
324