Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------ 28 // GEANT 4 class header file 29 // 30 // History: New Implementation 31 // 32 // ---------- G4QAOLowEnergyLoss physics process ------- 33 // by Stephane Chauvie, 21 May 2000 34 // 35 // Modified: 36 // 16/09/2000 S. Chauvie Oscillator for all materials 37 // 23/05/2000 MGP Made compliant to design 38 // 01/06/2001 V.Ivanchenko replace names by Z 39 // 40 // Class description: 41 // Quantal Harmonic Oscillator Model for energy loss of low energy antiprotons 42 // Further documentation available from http://www.ge.infn.it/geant4/lowE 43 44 // ------------------------------------------------------------ 45 46 47 #ifndef G4QAOLowEnergyLoss_hh 48 #define G4QAOLowEnergyLoss_hh 1 49 50 #include "G4VLowEnergyModel.hh" 51 #include "globals.hh" 52 53 class G4QAOLowEnergyLoss : public G4VLowEnergyModel 54 { 55 public: 56 explicit G4QAOLowEnergyLoss(const G4String& name); 57 ~G4QAOLowEnergyLoss(); 58 59 G4double HighEnergyLimit(const G4ParticleDefinition* aParticle, 60 const G4Material* material) const override; 61 // returns the higher limit for model validity 62 63 G4double LowEnergyLimit(const G4ParticleDefinition* aParticle, 64 const G4Material* material) const override; 65 // returns the lower limit for model validity 66 67 G4double HighEnergyLimit(const G4ParticleDefinition* aParticle) const override; 68 // returns the higher limit for model validity 69 70 G4double LowEnergyLimit(const G4ParticleDefinition* aParticle) const override; 71 // returns the lower limit for model validity 72 73 G4bool IsInCharge(const G4DynamicParticle* particle, 74 const G4Material* material) const override; 75 // returns true if the model is applicable at that energy for 76 // that particle for that material 77 78 G4bool IsInCharge(const G4ParticleDefinition* aParticle, 79 const G4Material* material) const override; 80 // returns true if the model is applicable at that energy for 81 // that particle for that material 82 83 G4double TheValue(const G4DynamicParticle* particle, 84 const G4Material* material) override; 85 // returns the energy loss via the quantal harmonic oscillator model 86 87 G4double TheValue(const G4ParticleDefinition* aParticle, 88 const G4Material* material, 89 G4double kineticEnergy) override; 90 // returns the energy loss via the quantal harmonic oscillator model 91 92 private: 93 G4double EnergyLoss(const G4Material* material, 94 G4double kineticEnergy, 95 G4double zParticle) const; 96 // returns the energy loss via the quantal harmonic oscillator model 97 98 // get number of shell, energy and oscillator strengths for material 99 G4int GetNumberOfShell(const G4Material* material) const; 100 101 G4double GetShellEnergy(const G4Material* material,G4int nbOfTheShell) const; 102 G4double GetOscillatorEnergy(const G4Material* material,G4int nbOfTheShell) const; 103 G4double GetShellStrength(const G4Material* material,G4int nbOfTheShell) const; 104 G4double GetOccupationNumber(G4int Z, G4int ShellNb) const; 105 106 // calculate stopping number for L's term 107 G4double GetL0(G4double normEnergy) const; 108 // terms in Z^2 109 G4double GetL1(G4double normEnergy) const; 110 // terms in Z^3 111 G4double GetL2(G4double normEnergy) const; 112 // terms in Z^4 113 114 // number, energy and oscillator strengths 115 // for an harmonic oscillator model of material 116 static const G4int nbofShellForMaterial[6]; 117 static const G4double alShellEnergy[3]; 118 static const G4double alShellStrength[3]; 119 static const G4double siShellEnergy[3]; 120 static const G4double siShellStrength[3]; 121 static const G4double cuShellEnergy[4]; 122 static const G4double cuShellStrength[4]; 123 static const G4double taShellEnergy[6]; 124 static const G4double taShellStrength[6]; 125 static const G4double auShellEnergy[6]; 126 static const G4double auShellStrength[6]; 127 static const G4double ptShellEnergy[6]; 128 static const G4double ptShellStrength[6]; 129 // variable for calculation of stopping number of L's term 130 static const G4double L0[67][2]; 131 static const G4double L1[22][2]; 132 static const G4double L2[14][2]; 133 static const G4int nbOfElectronPerSubShell[1540]; 134 static const G4int fNumberOfShells[101]; 135 136 // Z of element at now avaliable for the model 137 static const G4int materialAvailable[6]; 138 139 G4int numberOfMaterials; 140 G4int sizeL0; 141 G4int sizeL1; 142 G4int sizeL2; 143 144 }; 145 146 #endif 147