Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // ------------------------------------------------------------------- 28 // 29 // GEANT4 Class header file 30 // 31 // 32 // File name: G4mplIonisationModel 33 // 34 // Author: Vladimir Ivanchenko 35 // 36 // Creation date: 06.09.2005 37 // 38 // Modifications: 39 // 12.08.2007 Changing low energy approximation and extrapolation. 40 // Small bug fixing and refactoring (M. Vladymyrov) 41 // 13.11.2007 Use low-energy asymptotic from [3] (V.Ivanchenko) 42 // 43 // 44 // ------------------------------------------------------------------- 45 // References 46 // [1] Steven P. Ahlen: Energy loss of relativistic heavy ionizing particles, 47 // S.P. Ahlen, Rev. Mod. Phys 52(1980), p121 48 // [2] K.A. Milton arXiv:hep-ex/0602040 49 // [3] S.P. Ahlen and K. Kinoshita, Phys. Rev. D26 (1982) 2347 50 51 52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 54 55 #include "G4mplIonisationModel.hh" 56 #include "Randomize.hh" 57 #include "G4PhysicalConstants.hh" 58 #include "G4SystemOfUnits.hh" 59 #include "G4ParticleChangeForLoss.hh" 60 #include "G4ProductionCutsTable.hh" 61 #include "G4MaterialCutsCouple.hh" 62 #include "G4Log.hh" 63 #include "G4Pow.hh" 64 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 66 67 std::vector<G4double>* G4mplIonisationModel::dedx0 = nullptr; 68 69 G4mplIonisationModel::G4mplIonisationModel(G4double mCharge, const G4String& nam) 70 : G4VEmModel(nam),G4VEmFluctuationModel(nam), 71 magCharge(mCharge), 72 twoln10(G4Log(100.0)), 73 betalow(0.01), 74 betalim(0.1), 75 beta2lim(betalim*betalim), 76 bg2lim(beta2lim*(1.0 + beta2lim)) 77 { 78 nmpl = G4int(std::abs(magCharge) * 2 * CLHEP::fine_structure_const + 0.5); 79 if(nmpl > 6) { nmpl = 6; } 80 else if(nmpl < 1) { nmpl = 1; } 81 pi_hbarc2_over_mc2 = CLHEP::pi*CLHEP::hbarc*CLHEP::hbarc/CLHEP::electron_mass_c2; 82 chargeSquare = magCharge * magCharge; 83 dedxlim = 45.*nmpl*nmpl*CLHEP::GeV*CLHEP::cm2/CLHEP::g; 84 } 85 86 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 87 88 G4mplIonisationModel::~G4mplIonisationModel() 89 { 90 if(IsMaster()) { delete dedx0; } 91 } 92 93 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 94 95 void G4mplIonisationModel::SetParticle(const G4ParticleDefinition* p) 96 { 97 monopole = p; 98 mass = monopole->GetPDGMass(); 99 G4double emin = 100 std::min(LowEnergyLimit(),0.1*mass*(1./std::sqrt(1. - betalow*betalow) - 1.)); 101 G4double emax = 102 std::max(HighEnergyLimit(),10.*mass*(1./std::sqrt(1. - beta2lim) - 1.)); 103 SetLowEnergyLimit(emin); 104 SetHighEnergyLimit(emax); 105 } 106 107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 108 109 void G4mplIonisationModel::Initialise(const G4ParticleDefinition* p, 110 const G4DataVector&) 111 { 112 if(nullptr == monopole) { SetParticle(p); } 113 if(nullptr == fParticleChange) { fParticleChange = GetParticleChangeForLoss(); } 114 if(IsMaster()) { 115 if(nullptr == dedx0) { dedx0 = new std::vector<G4double>; } 116 G4ProductionCutsTable* theCoupleTable= 117 G4ProductionCutsTable::GetProductionCutsTable(); 118 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize(); 119 G4int n = (G4int)dedx0->size(); 120 if(n < numOfCouples) { dedx0->resize(numOfCouples); } 121 122 G4Pow* g4calc = G4Pow::GetInstance(); 123 124 // initialise vector assuming low conductivity 125 for(G4int i=0; i<numOfCouples; ++i) { 126 127 const G4Material* material = 128 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial(); 129 G4double eDensity = material->GetElectronDensity(); 130 G4double vF2 = 2*electron_Compton_length*g4calc->A13(3.*pi*pi*eDensity); 131 (*dedx0)[i] = pi_hbarc2_over_mc2*eDensity*nmpl*nmpl* 132 (G4Log(vF2/fine_structure_const) - 0.5)/vF2; 133 } 134 } 135 } 136 137 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 138 139 G4double G4mplIonisationModel::ComputeDEDXPerVolume(const G4Material* material, 140 const G4ParticleDefinition* p, 141 G4double kineticEnergy, 142 G4double) 143 { 144 if(nullptr == monopole) { SetParticle(p); } 145 G4double tau = kineticEnergy / mass; 146 G4double gam = tau + 1.0; 147 G4double bg2 = tau * (tau + 2.0); 148 G4double beta2 = bg2 / (gam * gam); 149 G4double beta = std::sqrt(beta2); 150 151 // low-energy asymptotic formula 152 //G4double dedx = dedxlim*beta*material->GetDensity(); 153 G4double dedx = (*dedx0)[CurrentCouple()->GetIndex()]*beta; 154 155 // above asymptotic 156 if(beta > betalow) { 157 158 // high energy 159 if(beta >= betalim) { 160 dedx = ComputeDEDXAhlen(material, bg2); 161 162 } else { 163 164 //G4double dedx1 = dedxlim*betalow*material->GetDensity(); 165 G4double dedx1 = (*dedx0)[CurrentCouple()->GetIndex()]*betalow; 166 G4double dedx2 = ComputeDEDXAhlen(material, bg2lim); 167 168 // extrapolation between two formula 169 G4double kapa2 = beta - betalow; 170 G4double kapa1 = betalim - beta; 171 dedx = (kapa1*dedx1 + kapa2*dedx2)/(kapa1 + kapa2); 172 } 173 } 174 return dedx; 175 } 176 177 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 178 179 G4double G4mplIonisationModel::ComputeDEDXAhlen(const G4Material* material, 180 G4double bg2) 181 { 182 G4double eDensity = material->GetElectronDensity(); 183 G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); 184 G4double cden = material->GetIonisation()->GetCdensity(); 185 G4double mden = material->GetIonisation()->GetMdensity(); 186 G4double aden = material->GetIonisation()->GetAdensity(); 187 G4double x0den = material->GetIonisation()->GetX0density(); 188 G4double x1den = material->GetIonisation()->GetX1density(); 189 190 // Ahlen's formula for nonconductors, [1]p157, f(5.7) 191 G4double dedx = std::log(2.0 * electron_mass_c2 * bg2 / eexc) - 0.5; 192 193 // Kazama et al. cross-section correction 194 G4double k = 0.406; 195 if(nmpl > 1) k = 0.346; 196 197 // Bloch correction 198 const G4double B[7] = { 0.0, 0.248, 0.672, 1.022, 1.243, 1.464, 1.685}; 199 200 dedx += 0.5 * k - B[nmpl]; 201 202 // density effect correction 203 G4double deltam; 204 G4double x = std::log(bg2) / twoln10; 205 if ( x >= x0den ) { 206 deltam = twoln10 * x - cden; 207 if ( x < x1den ) deltam += aden * std::pow((x1den-x), mden); 208 dedx -= 0.5 * deltam; 209 } 210 211 // now compute the total ionization loss 212 dedx *= pi_hbarc2_over_mc2 * eDensity * nmpl * nmpl; 213 214 if (dedx < 0.0) dedx = 0.; 215 return dedx; 216 } 217 218 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 219 220 void G4mplIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*, 221 const G4MaterialCutsCouple*, 222 const G4DynamicParticle*, 223 G4double, 224 G4double) 225 {} 226 227 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 228 229 G4double G4mplIonisationModel::SampleFluctuations( 230 const G4MaterialCutsCouple* couple, 231 const G4DynamicParticle* dp, 232 const G4double tcut, 233 const G4double tmax, 234 const G4double length, 235 const G4double meanLoss) 236 { 237 G4double siga = Dispersion(couple->GetMaterial(),dp,tcut,tmax,length); 238 G4double loss = meanLoss; 239 siga = std::sqrt(siga); 240 G4double twomeanLoss = meanLoss + meanLoss; 241 242 if(twomeanLoss < siga) { 243 G4double x; 244 do { 245 loss = twomeanLoss*G4UniformRand(); 246 x = (loss - meanLoss)/siga; 247 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 248 } while (1.0 - 0.5*x*x < G4UniformRand()); 249 } else { 250 do { 251 loss = G4RandGauss::shoot(meanLoss,siga); 252 // Loop checking, 07-Aug-2015, Vladimir Ivanchenko 253 } while (0.0 > loss || loss > twomeanLoss); 254 } 255 return loss; 256 } 257 258 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 259 260 G4double G4mplIonisationModel::Dispersion(const G4Material* material, 261 const G4DynamicParticle* dp, 262 const G4double tcut, 263 const G4double tmax, 264 const G4double length) 265 { 266 G4double siga = 0.0; 267 G4double tau = dp->GetKineticEnergy()/mass; 268 if(tau > 0.0) { 269 const G4double beta = dp->GetBeta(); 270 siga = (tmax/(beta*beta) - 0.5*tcut) * twopi_mc2_rcl2 * length 271 * material->GetElectronDensity() * chargeSquare; 272 } 273 return siga; 274 } 275 276 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 277