Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 #include "G4LEPTSExcitationModel.hh" 27 28 29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 30 G4LEPTSExcitationModel::G4LEPTSExcitationModel(const G4String& modelName) 31 : G4VLEPTSModel( modelName ) 32 { 33 theXSType = XSExcitation; 34 fParticleChangeForGamma = nullptr; 35 LowestExcitationEnergy = 0; 36 LowestNeutralDisociationEnergy = 0; 37 } // constructor 38 39 40 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 41 G4LEPTSExcitationModel::~G4LEPTSExcitationModel() = default; 42 43 44 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 45 void G4LEPTSExcitationModel::Initialise(const G4ParticleDefinition* aParticle, 46 const G4DataVector&) 47 { 48 Init(); 49 BuildPhysicsTable( *aParticle ); 50 51 fParticleChangeForGamma = GetParticleChangeForGamma(); 52 53 LowestExcitationEnergy = 0; 54 LowestNeutralDisociationEnergy = 0; 55 56 57 } 58 59 60 std::map<G4int,std::vector<G4double> > G4LEPTSExcitationModel::ReadIXS(const G4String& fileTXS, const G4Material* aMaterial) 61 { 62 std::map<G4int,std::vector<G4double> > integralXS = G4VLEPTSModel::ReadIXS( fileTXS, aMaterial); 63 64 if( integralXS.empty() ) return integralXS; 65 66 for (G4int jj=theNXSdat[aMaterial]; jj>=0; jj--) { 67 if( integralXS[XSDissociation][jj] > 0.001) LowestExcitationEnergy = integralXS[XSTotal][jj-1]; 68 if( integralXS[XSVibration][jj] > 0.001) LowestNeutralDisociationEnergy = integralXS[XSTotal][jj-1]*CLHEP::eV; 69 // if( txs[5][j] > 0.001) LowestExcitationEnergy = txs[0][j-1]; 70 // if( txs[6][j] > 0.001) LowestNeutralDisociationEnergy = txs[0][j-1]*CLHEP::eV; 71 } 72 73 if( verboseLevel >= 1) G4cout << " LowestExcitationEnergy: " << LowestExcitationEnergy << G4endl 74 << "LowestNeutralDisociationEnergy: " << LowestNeutralDisociationEnergy/CLHEP::eV 75 << G4endl; 76 77 return integralXS; 78 } 79 80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 81 G4double G4LEPTSExcitationModel::CrossSectionPerVolume(const G4Material* mate, 82 const G4ParticleDefinition* aParticle, 83 G4double kineticEnergy, 84 G4double, 85 G4double) 86 { 87 return 1./GetMeanFreePath( mate, aParticle, kineticEnergy ); 88 89 } 90 91 92 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 93 void G4LEPTSExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>*, 94 const G4MaterialCutsCouple* mateCuts, 95 const G4DynamicParticle* aDynamicParticle, 96 G4double, 97 G4double) 98 { 99 G4double P0KinEn = aDynamicParticle->GetKineticEnergy(); 100 101 G4double Edep=0; 102 G4double Energylost=0; 103 G4ThreeVector P0Dir = aDynamicParticle->GetMomentumDirection(); 104 105 G4double eMin = 0.0; 106 const G4Material* aMaterial = mateCuts->GetMaterial(); 107 G4double eMax = std::min(theIonisPot[aMaterial], P0KinEn); 108 Energylost = SampleEnergyLoss(aMaterial, eMin, eMax); 109 110 Edep = Energylost; 111 112 G4ThreeVector P1Dir = SampleNewDirection(aMaterial, P0Dir, P0KinEn/CLHEP::eV, Energylost/CLHEP::eV); 113 G4double P1KinEn = P0KinEn - Edep; 114 115 fParticleChangeForGamma->ProposeMomentumDirection( P1Dir); 116 fParticleChangeForGamma->SetProposedKineticEnergy( P1KinEn); 117 fParticleChangeForGamma->ProposeLocalEnergyDeposit( Edep); 118 119 } 120