Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/dna/models/src/G4DNASmoluchowskiDiffusion.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 /*
 27  * G4DNASmoluchowskiDiffusion.cc
 28  *
 29  *  Created on: 2 févr. 2015
 30  *      Author: matkara
 31  */
 32 
 33 //#define DNADEV_TEST
 34 
 35 #ifdef DNADEV_TEST
 36 #include ""
 37 #else
 38 #include "G4DNASmoluchowskiDiffusion.hh"
 39 #endif
 40 
 41 //#if __cplusplus >= 201103L
 42 #ifdef DNADEV_TEST
 43 #include "TRint.h"
 44 #include "TCanvas.h"
 45 #include "TH1D.h"
 46 #include "TRandom.h"
 47 #include "TMath.h"
 48 #endif
 49 
 50 G4DNASmoluchowskiDiffusion::G4DNASmoluchowskiDiffusion(double epsilon) :  fEpsilon(epsilon)
 51 {
 52   fNbins = (int) trunc(1/fEpsilon);
 53   // std::cout << "fNbins: " << fNbins << std::endl;
 54 #ifdef DNADEV
 55   assert(fNbins > 0);
 56 #endif
 57   fInverse.resize(fNbins+2); // trunc sous-estime + borne max a rajouter ==> 2
 58 
 59   // std::cout << "fInverse.capacity(): "<< fInverse.capacity() << std::endl;
 60 }
 61 
 62 G4DNASmoluchowskiDiffusion::~G4DNASmoluchowskiDiffusion()
 63 = default;
 64 //#endif
 65 
 66 // --> G4DNASmoluchowskiDiffusion -- DEVELOPMENT TEST
 67 #ifdef DNADEV_TEST
 68 
 69 static G4DNASmoluchowskiDiffusion gDiff;
 70 
 71 double time_test = 1e-6 /*s*/;
 72 double D = 4.9e-9 /*m2/s*/;
 73 double test_distance = 1e-9; // m
 74 
 75 double Plot(double* x, double* )
 76 {
 77   double diff = gDiff.GetDensityProbability(x[0], time_test, D);
 78   return diff;
 79 }
 80 
 81 static double InvErfc(double x)
 82 {
 83   return TMath::ErfcInverse(x);
 84 }
 85 
 86 Axis_t* BinLogX(Int_t bins, Axis_t from, Axis_t to) // en puissance de 10
 87 {
 88    Axis_t width = (to - from) / bins;
 89    Axis_t *new_bins = new Axis_t[bins + 1];
 90 
 91    for (int i = 0; i <= bins; i++) {
 92      new_bins[i] = TMath::Power(10, from + i * width);
 93 //     std::cout << new_bins[i] << std::endl;
 94    }
 95    return new_bins;
 96 }
 97 
 98 int main(int argc, char **argv)
 99 {
100   gDiff.InitialiseInverseProbability();
101 //  srand (time(NULL));
102   TRint* root = new TRint("G4DNASmoluchowskiDiffusion",&argc, argv);
103   double interval = 1e-5;
104   G4DNASmoluchowskiDiffusion* diff = new G4DNASmoluchowskiDiffusion(interval);
105   diff->InitialiseInverseProbability();
106 
107 //  for(size_t i = 0 ; i < diff->fInverse.size() ; ++i)
108 //  {
109 //    std::cout << i*interval << " "<< diff->fInverse[i] << std::endl;
110 //  }
111 
112   std::cout << diff->fInverse.size() << std::endl;
113 
114   TCanvas* canvas = new TCanvas();
115   //canvas->SetLogx();
116   //canvas->SetLogy();
117 //
118 //  TF1 * f = new TF1("f",diff,&G4DNASmoluchowskiDiffusion::PlotInverse,0,10,0,"G4DNASmoluchowskiDiffusion","Plot");   // create TF1 class.
119 //  f->SetNpx(100000);
120 //  f->Draw();
121 //  canvas->Draw();
122 //
123 //  canvas = new TCanvas();
124   TH1D* h1 = new TH1D("h1", "h1", 100, 0., 1e-6);
125   double distance = -1;
126 
127   int N = 100000;
128 
129   for(size_t i = 0 ; i < N ; ++i)
130   {
131     distance = diff->GetRandomDistance(time_test,D);
132     h1->Fill(distance);
133     //std::cout << distance << std::endl;
134   }
135 
136   double scalf;
137 
138   {
139   int integral_h1 = h1->Integral();
140   h1->Scale(1./integral_h1);
141   scalf=h1->GetBinWidth ( 1 ) ;
142   h1->Scale(1./scalf);
143   h1->GetXaxis()->SetTitle("distance");
144   }
145 
146   TH1D* h2 = new TH1D("h2", "h2", 100, 0., 1e-6);
147   TH1D* h_irt_distance = new TH1D("h2", "h2", 100, 0., 1e-6);
148 
149   for(size_t i = 0 ; i < N ; ++i)
150   {
151     double x = std::sqrt(2*D*time_test)*root_random.Gaus();
152     double y = std::sqrt(2*D*time_test)*root_random.Gaus();
153     double z = std::sqrt(2*D*time_test)*root_random.Gaus();
154 
155     distance = std::sqrt(x*x+y*y+z*z);
156     h2->Fill(distance);
157     //std::cout << distance << std::endl;
158 
159     double proba = root_random.Rndm();
160     double irt_distance = InvErfc(proba)*2*std::sqrt(D*time_test);
161     h_irt_distance->Fill(irt_distance);
162   }
163 
164   {
165   int integral_h2 = h2->Integral();
166   h2->Scale(1./integral_h2);
167   scalf=h2->GetBinWidth ( 1 ) ;
168   h2->Scale(1./scalf);
169   }
170 
171   {
172   int integral_h_irt_distance = h_irt_distance->Integral();
173   h_irt_distance->Scale(1./integral_h_irt_distance);
174   scalf = h_irt_distance->GetBinWidth ( 1 ) ;
175   h_irt_distance->Scale(1./scalf);
176   h_irt_distance->GetXaxis()->SetTitle("distance");
177   }
178 
179 
180   TF1 * f2 = new TF1("f2",&Plot,0,1e-6,0,"Plot");   // create TF1 class.
181   //f2->SetNpx(1000);
182   h1->Draw();
183   // h1->DrawNormalized();
184   f2->Draw("SAME");
185   h2->Draw("SAME");
186   h_irt_distance->Draw("SAME");
187   double integral = f2->Integral(0., 1e-6);
188   std::cout << "integral = " << integral << std::endl;
189   std::cout << "integral h1 = " << h1->Integral() << std::endl;
190   canvas->Draw();
191 
192   std::vector<double> rdm(3);
193   int nbins = 100;
194   Axis_t* bins = BinLogX(nbins, -12, -1);
195 
196   TH1D* h3 = new TH1D("h3", "h3", 100, bins);
197   TH1D* h4 = new TH1D("h4", "h4", 100, bins);
198   TH1D* h_irt = new TH1D("h_irt", "h_irt", 100, bins);
199 
200   for(size_t i = 0 ; i < N ; ++i)
201   {
202     for(size_t j = 0 ; j < 3 ; ++j)
203       rdm[j] = root_random.Gaus();
204 
205     double denum = 1./(rdm[0]*rdm[0] + rdm[1]*rdm[1] + rdm[2]*rdm[2]);
206 
207     double t = ((test_distance*test_distance)*denum)*1./(2*D);
208     h3->Fill(t);
209 
210     double t_h4 =  diff->GetRandomTime(test_distance,D);
211     h4->Fill(t_h4);
212 //    std::cout << t  << " " << t_h4 << std::endl;
213 
214     double proba = root_random.Rndm();
215     double t_irt =  1./(4*D)*std::pow((test_distance)/InvErfc(proba),2);
216     h_irt ->Fill(t_irt);
217   }
218 
219   {
220     TCanvas* c1 = new TCanvas();
221     c1->SetLogx();
222     int integral_h3 = h3->Integral();
223     h3->Scale(1./integral_h3);
224     scalf=h3->GetBinWidth ( 1 ) ;
225     h3->Scale(1./scalf);
226     h3->SetLineColor(1);
227     h3->GetXaxis()->SetTitle("time");;
228     h3->Draw();
229   }
230 
231   {
232 //    TCanvas* c1 = new TCanvas();
233 //    c1->SetLogx();
234     int integral_h4 = h4->Integral();
235     h4->Scale(1./integral_h4);
236     scalf=h4->GetBinWidth ( 1 ) ;
237     h4->Scale(1./scalf);
238     h4->SetLineColor(6);
239     h4->Draw("SAME");
240   //  h4->Draw("SAME");
241   }
242 
243   {
244 //    TCanvas* c1 = new TCanvas();
245 //    c1->SetLogx();
246     int integral_h_irt = h_irt->Integral();
247     h_irt->Scale(1./integral_h_irt);
248     scalf=h_irt->GetBinWidth ( 1 ) ;
249     h_irt->Scale(1./scalf);
250     h_irt->SetLineColor(4);
251     h_irt->Draw("SAME");
252   //  h4->Draw("SAME");
253   }
254   root->Run();
255   return 0;
256 }
257 #endif
258