Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 28 #include "G4DNABornIonisationModel1.hh" 29 #include "G4PhysicalConstants.hh" 30 #include "G4SystemOfUnits.hh" 31 #include "G4UAtomicDeexcitation.hh" 32 #include "G4LossTableManager.hh" 33 #include "G4DNAChemistryManager.hh" 34 #include "G4DNAMolecularMaterial.hh" 35 #include "G4DNABornAngle.hh" 36 #include "G4DeltaAngle.hh" 37 #include "G4Exp.hh" 38 39 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 40 41 using namespace std; 42 43 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 44 45 G4DNABornIonisationModel1::G4DNABornIonisationModel1(const G4ParticleDefinition*, 46 const G4String& nam) : 47 G4VEmModel(nam) 48 { 49 verboseLevel = 0; 50 // Verbosity scale: 51 // 0 = nothing 52 // 1 = warning for energy non-conservation 53 // 2 = details of energy budget 54 // 3 = calculation of cross sections, file openings, sampling of atoms 55 // 4 = entering in methods 56 57 if (verboseLevel > 0) 58 { 59 G4cout << "Born ionisation model is constructed " << G4endl; 60 } 61 62 // Mark this model as "applicable" for atomic deexcitation 63 SetDeexcitationFlag(true); 64 fAtomDeexcitation = nullptr; 65 fParticleChangeForGamma = nullptr; 66 fpMolWaterDensity = nullptr; 67 68 // Define default angular generator 69 SetAngularDistribution(new G4DNABornAngle()); 70 71 // Selection of computation method 72 73 fasterCode = false; 74 75 // Selection of stationary mode 76 77 statCode = false; 78 79 // Selection of SP scaling 80 81 spScaling = true; 82 } 83 84 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 85 86 G4DNABornIonisationModel1::~G4DNABornIonisationModel1() 87 { 88 // Cross section 89 90 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos; 91 for (pos = tableData.begin(); pos != tableData.end(); ++pos) 92 { 93 G4DNACrossSectionDataSet* table = pos->second; 94 delete table; 95 } 96 97 // Final state 98 99 eVecm.clear(); 100 pVecm.clear(); 101 } 102 103 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 104 105 void G4DNABornIonisationModel1::Initialise(const G4ParticleDefinition* particle, 106 const G4DataVector& /*cuts*/) 107 { 108 109 if (verboseLevel > 3) 110 { 111 G4cout << "Calling G4DNABornIonisationModel1::Initialise()" << G4endl; 112 } 113 114 // Energy limits 115 116 G4String fileElectron("dna/sigma_ionisation_e_born"); 117 G4String fileProton("dna/sigma_ionisation_p_born"); 118 119 G4ParticleDefinition* electronDef = G4Electron::ElectronDefinition(); 120 G4ParticleDefinition* protonDef = G4Proton::ProtonDefinition(); 121 122 G4String electron; 123 G4String proton; 124 125 G4double scaleFactor = (1.e-22 / 3.343) * m*m; 126 127 const char *path = G4FindDataDir("G4LEDATA"); 128 129 // *** ELECTRON 130 131 electron = electronDef->GetParticleName(); 132 133 tableFile[electron] = fileElectron; 134 135 lowEnergyLimit[electron] = 11. * eV; 136 highEnergyLimit[electron] = 1. * MeV; 137 138 // Cross section 139 140 auto tableE = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor ); 141 tableE->LoadData(fileElectron); 142 143 tableData[electron] = tableE; 144 145 // Final state 146 147 std::ostringstream eFullFileName; 148 149 if (fasterCode) eFullFileName << path << "/dna/sigmadiff_cumulated_ionisation_e_born_hp.dat"; 150 if (!fasterCode) eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat"; 151 152 std::ifstream eDiffCrossSection(eFullFileName.str().c_str()); 153 154 if (!eDiffCrossSection) 155 { 156 if (fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003", 157 FatalException,"Missing data file:/dna/sigmadiff_cumulated_ionisation_e_born_hp.dat"); 158 159 if (!fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003", 160 FatalException,"Missing data file:/dna/sigmadiff_ionisation_e_born.dat"); 161 } 162 163 // Clear the arrays for re-initialization case (MT mode) 164 // March 25th, 2014 - Vaclav Stepan, Sebastien Incerti 165 166 eTdummyVec.clear(); 167 pTdummyVec.clear(); 168 169 eVecm.clear(); 170 pVecm.clear(); 171 172 for (G4int j=0; j<5; j++) 173 { 174 eProbaShellMap[j].clear(); 175 pProbaShellMap[j].clear(); 176 177 eDiffCrossSectionData[j].clear(); 178 pDiffCrossSectionData[j].clear(); 179 180 eNrjTransfData[j].clear(); 181 pNrjTransfData[j].clear(); 182 } 183 184 // 185 186 eTdummyVec.push_back(0.); 187 while(!eDiffCrossSection.eof()) 188 { 189 G4double tDummy; 190 G4double eDummy; 191 eDiffCrossSection>>tDummy>>eDummy; 192 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy); 193 194 G4double tmp; 195 for (G4int j=0; j<5; j++) 196 { 197 eDiffCrossSection>> tmp; 198 199 eDiffCrossSectionData[j][tDummy][eDummy] = tmp; 200 201 if (fasterCode) 202 { 203 eNrjTransfData[j][tDummy][eDiffCrossSectionData[j][tDummy][eDummy]]=eDummy; 204 eProbaShellMap[j][tDummy].push_back(eDiffCrossSectionData[j][tDummy][eDummy]); 205 } 206 207 // SI - only if eof is not reached 208 if (!eDiffCrossSection.eof() && !fasterCode) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor; 209 210 if (!fasterCode) eVecm[tDummy].push_back(eDummy); 211 212 } 213 } 214 215 // *** PROTON 216 217 proton = protonDef->GetParticleName(); 218 219 tableFile[proton] = fileProton; 220 221 lowEnergyLimit[proton] = 500. * keV; 222 highEnergyLimit[proton] = 100. * MeV; 223 224 // Cross section 225 226 auto tableP = new G4DNACrossSectionDataSet(new G4LogLogInterpolation, eV,scaleFactor ); 227 tableP->LoadData(fileProton); 228 229 tableData[proton] = tableP; 230 231 // Final state 232 233 std::ostringstream pFullFileName; 234 235 if (fasterCode) pFullFileName << path << "/dna/sigmadiff_cumulated_ionisation_p_born_hp.dat"; 236 237 if (!fasterCode) pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat"; 238 239 std::ifstream pDiffCrossSection(pFullFileName.str().c_str()); 240 241 if (!pDiffCrossSection) 242 { 243 if (fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003", 244 FatalException,"Missing data file:/dna/sigmadiff_cumulated_ionisation_p_born_hp.dat"); 245 246 if (!fasterCode) G4Exception("G4DNABornIonisationModel1::Initialise","em0003", 247 FatalException,"Missing data file:/dna/sigmadiff_ionisation_p_born.dat"); 248 } 249 250 pTdummyVec.push_back(0.); 251 while(!pDiffCrossSection.eof()) 252 { 253 G4double tDummy; 254 G4double eDummy; 255 pDiffCrossSection>>tDummy>>eDummy; 256 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy); 257 for (G4int j=0; j<5; j++) 258 { 259 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy]; 260 261 if (fasterCode) 262 { 263 pNrjTransfData[j][tDummy][pDiffCrossSectionData[j][tDummy][eDummy]]=eDummy; 264 pProbaShellMap[j][tDummy].push_back(pDiffCrossSectionData[j][tDummy][eDummy]); 265 } 266 267 // SI - only if eof is not reached ! 268 if (!pDiffCrossSection.eof() && !fasterCode) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor; 269 270 if (!fasterCode) pVecm[tDummy].push_back(eDummy); 271 } 272 } 273 274 // 275 276 if (particle==electronDef) 277 { 278 SetLowEnergyLimit(lowEnergyLimit[electron]); 279 SetHighEnergyLimit(highEnergyLimit[electron]); 280 } 281 282 if (particle==protonDef) 283 { 284 SetLowEnergyLimit(lowEnergyLimit[proton]); 285 SetHighEnergyLimit(highEnergyLimit[proton]); 286 } 287 288 if( verboseLevel>0 ) 289 { 290 G4cout << "Born ionisation model is initialized " << G4endl 291 << "Energy range: " 292 << LowEnergyLimit() / eV << " eV - " 293 << HighEnergyLimit() / keV << " keV for " 294 << particle->GetParticleName() 295 << G4endl; 296 } 297 298 // Initialize water density pointer 299 300 fpMolWaterDensity = G4DNAMolecularMaterial::Instance()-> 301 GetNumMolPerVolTableFor(G4Material::GetMaterial("G4_WATER")); 302 303 // AD 304 305 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation(); 306 307 // 308 309 if (isInitialised) 310 { return;} 311 fParticleChangeForGamma = GetParticleChangeForGamma(); 312 isInitialised = true; 313 } 314 315 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 316 317 G4double G4DNABornIonisationModel1::CrossSectionPerVolume(const G4Material* material, 318 const G4ParticleDefinition* particleDefinition, 319 G4double ekin, 320 G4double, 321 G4double) 322 { 323 if (verboseLevel > 3) 324 { 325 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel1" 326 << G4endl; 327 } 328 329 if ( 330 particleDefinition != G4Proton::ProtonDefinition() 331 && 332 particleDefinition != G4Electron::ElectronDefinition() 333 ) 334 335 return 0; 336 337 // Calculate total cross section for model 338 339 G4double lowLim = 0; 340 G4double highLim = 0; 341 G4double sigma=0; 342 343 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()]; 344 345 const G4String& particleName = particleDefinition->GetParticleName(); 346 347 std::map< G4String,G4double,std::less<G4String> >::iterator pos1; 348 pos1 = lowEnergyLimit.find(particleName); 349 if (pos1 != lowEnergyLimit.end()) 350 { 351 lowLim = pos1->second; 352 } 353 354 std::map< G4String,G4double,std::less<G4String> >::iterator pos2; 355 pos2 = highEnergyLimit.find(particleName); 356 if (pos2 != highEnergyLimit.end()) 357 { 358 highLim = pos2->second; 359 } 360 361 if (ekin >= lowLim && ekin <= highLim) 362 { 363 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos; 364 pos = tableData.find(particleName); 365 366 if (pos != tableData.end()) 367 { 368 G4DNACrossSectionDataSet* table = pos->second; 369 if (table != nullptr) 370 { 371 sigma = table->FindValue(ekin); 372 373 // ICRU49 electronic SP scaling - ZF, SI 374 375 if (particleDefinition == G4Proton::ProtonDefinition() && ekin < 70*MeV && spScaling) 376 { 377 G4double A = 1.39241700556072800000E-009 ; 378 G4double B = -8.52610412942622630000E-002 ; 379 sigma = sigma * G4Exp(A*(ekin/eV)+B); 380 } 381 // 382 383 } 384 } 385 else 386 { 387 G4Exception("G4DNABornIonisationModel1::CrossSectionPerVolume","em0002", 388 FatalException,"Model not applicable to particle type."); 389 } 390 } 391 392 if (verboseLevel > 2) 393 { 394 G4cout << "__________________________________" << G4endl; 395 G4cout << "G4DNABornIonisationModel1 - XS INFO START" << G4endl; 396 G4cout << "Kinetic energy(eV)=" << ekin/eV << " particle : " << particleName << G4endl; 397 G4cout << "Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl; 398 G4cout << "Cross section per water molecule (cm^-1)=" << sigma*waterDensity/(1./cm) << G4endl; 399 G4cout << "G4DNABornIonisationModel1 - XS INFO END" << G4endl; 400 } 401 402 return sigma*waterDensity; 403 } 404 405 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... 406 407 void G4DNABornIonisationModel1::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect, 408 const G4MaterialCutsCouple* couple, 409 const G4DynamicParticle* particle, 410 G4double, 411 G4double) 412 { 413 414 if (verboseLevel > 3) 415 { 416 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel1" 417 << G4endl; 418 } 419 420 G4double lowLim = 0; 421 G4double highLim = 0; 422 423 G4double k = particle->GetKineticEnergy(); 424 425 const G4String& particleName = particle->GetDefinition()->GetParticleName(); 426 427 std::map< G4String,G4double,std::less<G4String> >::iterator pos1; 428 pos1 = lowEnergyLimit.find(particleName); 429 430 if (pos1 != lowEnergyLimit.end()) 431 { 432 lowLim = pos1->second; 433 } 434 435 std::map< G4String,G4double,std::less<G4String> >::iterator pos2; 436 pos2 = highEnergyLimit.find(particleName); 437 438 if (pos2 != highEnergyLimit.end()) 439 { 440 highLim = pos2->second; 441 } 442 443 if (k >= lowLim && k <= highLim) 444 { 445 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection(); 446 G4double particleMass = particle->GetDefinition()->GetPDGMass(); 447 G4double totalEnergy = k + particleMass; 448 G4double pSquare = k * (totalEnergy + particleMass); 449 G4double totalMomentum = std::sqrt(pSquare); 450 451 G4int ionizationShell = 0; 452 453 if (!fasterCode) ionizationShell = RandomSelect(k,particleName); 454 455 // SI: The following protection is necessary to avoid infinite loops : 456 // sigmadiff_ionisation_e_born.dat has non zero partial xs at 18 eV for shell 3 (ionizationShell ==2) 457 // sigmadiff_cumulated_ionisation_e_born.dat has zero cumulated partial xs at 18 eV for shell 3 (ionizationShell ==2) 458 // this is due to the fact that the max allowed transfered energy is (18+10.79)/2=17.025 eV and only transfered energies 459 // strictly above this value have non zero partial xs in sigmadiff_ionisation_e_born.dat (starting at trans = 17.12 eV) 460 461 if (fasterCode) 462 do 463 { 464 ionizationShell = RandomSelect(k,particleName); 465 } while (k<19*eV && ionizationShell==2 && particle->GetDefinition()==G4Electron::ElectronDefinition()); 466 467 G4double bindingEnergy = 0; 468 bindingEnergy = waterStructure.IonisationEnergy(ionizationShell); 469 470 // SI: additional protection if tcs interpolation method is modified 471 if (k<bindingEnergy) return; 472 // 473 474 G4double secondaryKinetic=-1000*eV; 475 476 if (!fasterCode) 477 { 478 secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell); 479 } 480 else 481 { 482 secondaryKinetic = RandomizeEjectedElectronEnergyFromCumulatedDcs(particle->GetDefinition(),k,ionizationShell); 483 } 484 // 485 486 G4int Z = 8; 487 488 G4ThreeVector deltaDirection = 489 GetAngularDistribution()->SampleDirectionForShell(particle, secondaryKinetic, 490 Z, ionizationShell, 491 couple->GetMaterial()); 492 493 if (secondaryKinetic>0) 494 { 495 auto dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic); 496 fvect->push_back(dp); 497 } 498 499 if (particle->GetDefinition() == G4Electron::ElectronDefinition()) 500 { 501 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 )); 502 503 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x(); 504 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y(); 505 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z(); 506 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz); 507 finalPx /= finalMomentum; 508 finalPy /= finalMomentum; 509 finalPz /= finalMomentum; 510 511 G4ThreeVector direction; 512 direction.set(finalPx,finalPy,finalPz); 513 514 fParticleChangeForGamma->ProposeMomentumDirection(direction.unit()); 515 } 516 517 else fParticleChangeForGamma->ProposeMomentumDirection(primaryDirection); 518 519 // AM: sample deexcitation 520 // here we assume that H_{2}O electronic levels are the same as Oxygen. 521 // this can be considered true with a rough 10% error in energy on K-shell, 522 523 std::size_t secNumberInit = 0;// need to know at a certain point the energy of secondaries 524 std::size_t secNumberFinal = 0;// So I'll make the diference and then sum the energies 525 526 G4double scatteredEnergy = k-bindingEnergy-secondaryKinetic; 527 528 // SI: only atomic deexcitation from K shell is considered 529 if((fAtomDeexcitation != nullptr) && ionizationShell == 4) 530 { 531 const G4AtomicShell* shell = 532 fAtomDeexcitation->GetAtomicShell(Z, G4AtomicShellEnumerator(0)); 533 secNumberInit = fvect->size(); 534 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, 0, 0); 535 secNumberFinal = fvect->size(); 536 537 //TEST 538 //G4cout << "ionizationShell=" << ionizationShell<< G4endl; 539 //G4cout << "bindingEnergy=" << bindingEnergy/eV<< G4endl; 540 541 if(secNumberFinal > secNumberInit) 542 { 543 for (std::size_t i=secNumberInit; i<secNumberFinal; ++i) 544 { 545 //Check if there is enough residual energy 546 if (bindingEnergy >= ((*fvect)[i])->GetKineticEnergy()) 547 { 548 //Ok, this is a valid secondary: keep it 549 bindingEnergy -= ((*fvect)[i])->GetKineticEnergy(); 550 //G4cout << "--deex nrj=" << ((*fvect)[i])->GetKineticEnergy()/eV 551 //<< G4endl; 552 } 553 else 554 { 555 //Invalid secondary: not enough energy to create it! 556 //Keep its energy in the local deposit 557 delete (*fvect)[i]; 558 (*fvect)[i]=nullptr; 559 } 560 } 561 } 562 563 //TEST 564 //G4cout << "k=" << k/eV<< G4endl; 565 //G4cout << "secondaryKinetic=" << secondaryKinetic/eV<< G4endl; 566 //G4cout << "scatteredEnergy=" << scatteredEnergy/eV<< G4endl; 567 //G4cout << "deposited energy=" << bindingEnergy/eV<< G4endl; 568 // 569 570 } 571 572 //This should never happen 573 if(bindingEnergy < 0.0) 574 G4Exception("G4DNABornIonisatioModel1::SampleSecondaries()", 575 "em2050",FatalException,"Negative local energy deposit"); 576 577 //bindingEnergy has been decreased 578 //by the amount of energy taken away by deexc. products 579 if (!statCode) 580 { 581 fParticleChangeForGamma->SetProposedKineticEnergy(scatteredEnergy); 582 fParticleChangeForGamma->ProposeLocalEnergyDeposit(bindingEnergy); 583 } 584 else 585 { 586 fParticleChangeForGamma->SetProposedKineticEnergy(k); 587 fParticleChangeForGamma->ProposeLocalEnergyDeposit(k-scatteredEnergy); 588 } 589 590 // TEST ////////////////////////// 591 // if (secondaryKinetic<0) abort(); 592 // if (scatteredEnergy<0) abort(); 593 // if (k-scatteredEnergy-secondaryKinetic-deexSecEnergy<0) abort(); 594 // if (k-scatteredEnergy<0) abort(); 595 ///////////////////////////////// 596 597 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack(); 598 G4DNAChemistryManager::Instance()->CreateWaterMolecule(eIonizedMolecule, 599 ionizationShell, 600 theIncomingTrack); 601 } 602 } 603 604 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 605 606 G4double G4DNABornIonisationModel1::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition, 607 G4double k, 608 G4int shell) 609 { 610 // G4cout << "*** SLOW computation for " << " " << particleDefinition->GetParticleName() << G4endl; 611 612 if (particleDefinition == G4Electron::ElectronDefinition()) 613 { 614 G4double maximumEnergyTransfer = 0.; 615 if ((k + waterStructure.IonisationEnergy(shell)) / 2. > k) 616 maximumEnergyTransfer = k; 617 else 618 maximumEnergyTransfer = (k + waterStructure.IonisationEnergy(shell)) / 2.; 619 620 // SI : original method 621 /* 622 G4double crossSectionMaximum = 0.; 623 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV) 624 { 625 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell); 626 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection; 627 } 628 */ 629 630 // SI : alternative method 631 G4double crossSectionMaximum = 0.; 632 633 G4double minEnergy = waterStructure.IonisationEnergy(shell); 634 G4double maxEnergy = maximumEnergyTransfer; 635 G4int nEnergySteps = 50; 636 637 G4double value(minEnergy); 638 G4double stpEnergy(std::pow(maxEnergy / value, 639 1. / static_cast<G4double>(nEnergySteps - 1))); 640 G4int step(nEnergySteps); 641 while (step > 0) 642 { 643 step--; 644 G4double differentialCrossSection = 645 DifferentialCrossSection(particleDefinition, 646 k / eV, 647 value / eV, 648 shell); 649 if (differentialCrossSection >= crossSectionMaximum) 650 crossSectionMaximum = differentialCrossSection; 651 value *= stpEnergy; 652 } 653 // 654 655 G4double secondaryElectronKineticEnergy = 0.; 656 do 657 { 658 secondaryElectronKineticEnergy = G4UniformRand()* (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell)); 659 } while(G4UniformRand()*crossSectionMaximum > 660 DifferentialCrossSection(particleDefinition, k/eV, 661 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell)); 662 663 return secondaryElectronKineticEnergy; 664 665 } 666 667 if (particleDefinition == G4Proton::ProtonDefinition()) 668 { 669 G4double maximumKineticEnergyTransfer = 4. 670 * (electron_mass_c2 / proton_mass_c2) * k; 671 672 G4double crossSectionMaximum = 0.; 673 for (G4double value = waterStructure.IonisationEnergy(shell); 674 value <= 4. * waterStructure.IonisationEnergy(shell); value += 0.1 * eV) 675 { 676 G4double differentialCrossSection = 677 DifferentialCrossSection(particleDefinition, 678 k / eV, 679 value / eV, 680 shell); 681 if (differentialCrossSection >= crossSectionMaximum) 682 crossSectionMaximum = differentialCrossSection; 683 } 684 685 G4double secondaryElectronKineticEnergy = 0.; 686 do 687 { 688 secondaryElectronKineticEnergy = G4UniformRand()* maximumKineticEnergyTransfer; 689 } while(G4UniformRand()*crossSectionMaximum >= 690 DifferentialCrossSection(particleDefinition, k/eV, 691 (secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell)); 692 693 return secondaryElectronKineticEnergy; 694 } 695 696 return 0; 697 } 698 699 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 700 701 // The following section is not used anymore but is kept for memory 702 // GetAngularDistribution()->SampleDirectionForShell is used instead 703 704 /* 705 void G4DNABornIonisationModel1::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition, 706 G4double k, 707 G4double secKinetic, 708 G4double & cosTheta, 709 G4double & phi ) 710 { 711 if (particleDefinition == G4Electron::ElectronDefinition()) 712 { 713 phi = twopi * G4UniformRand(); 714 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.; 715 else if (secKinetic <= 200.*eV) 716 { 717 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.; 718 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2); 719 } 720 else 721 { 722 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2)); 723 cosTheta = std::sqrt(1.-sin2O); 724 } 725 } 726 727 else if (particleDefinition == G4Proton::ProtonDefinition()) 728 { 729 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k; 730 phi = twopi * G4UniformRand(); 731 732 // cosTheta = std::sqrt(secKinetic / maxSecKinetic); 733 734 // Restriction below 100 eV from Emfietzoglou (2000) 735 736 if (secKinetic>100*eV) cosTheta = std::sqrt(secKinetic / maxSecKinetic); 737 else cosTheta = (2.*G4UniformRand())-1.; 738 739 } 740 } 741 */ 742 743 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 744 G4double G4DNABornIonisationModel1::DifferentialCrossSection(G4ParticleDefinition * particleDefinition, 745 G4double k, 746 G4double energyTransfer, 747 G4int ionizationLevelIndex) 748 { 749 G4double sigma = 0.; 750 751 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex)/eV) 752 { 753 G4double valueT1 = 0; 754 G4double valueT2 = 0; 755 G4double valueE21 = 0; 756 G4double valueE22 = 0; 757 G4double valueE12 = 0; 758 G4double valueE11 = 0; 759 760 G4double xs11 = 0; 761 G4double xs12 = 0; 762 G4double xs21 = 0; 763 G4double xs22 = 0; 764 765 if (particleDefinition == G4Electron::ElectronDefinition()) 766 { 767 768 // Protection against out of boundary access - electron case : 1 MeV 769 if (k==eTdummyVec.back()) k=k*(1.-1e-12); 770 // 771 772 // k should be in eV and energy transfer eV also 773 774 auto t2 = std::upper_bound(eTdummyVec.begin(), 775 eTdummyVec.end(), 776 k); 777 778 auto t1 = t2 - 1; 779 780 // SI : the following condition avoids situations where energyTransfer >last vector element 781 if (energyTransfer <= eVecm[(*t1)].back() 782 && energyTransfer <= eVecm[(*t2)].back()) 783 { 784 auto e12 = 785 std::upper_bound(eVecm[(*t1)].begin(), 786 eVecm[(*t1)].end(), 787 energyTransfer); 788 auto e11 = e12 - 1; 789 790 auto e22 = 791 std::upper_bound(eVecm[(*t2)].begin(), 792 eVecm[(*t2)].end(), 793 energyTransfer); 794 auto e21 = e22 - 1; 795 796 valueT1 = *t1; 797 valueT2 = *t2; 798 valueE21 = *e21; 799 valueE22 = *e22; 800 valueE12 = *e12; 801 valueE11 = *e11; 802 803 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11]; 804 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12]; 805 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21]; 806 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22]; 807 808 } 809 810 } 811 812 if (particleDefinition == G4Proton::ProtonDefinition()) 813 { 814 // Protection against out of boundary access - proton case : 100 MeV 815 if (k==pTdummyVec.back()) k=k*(1.-1e-12); 816 // 817 818 // k should be in eV and energy transfer eV also 819 auto t2 = std::upper_bound(pTdummyVec.begin(), 820 pTdummyVec.end(), 821 k); 822 auto t1 = t2 - 1; 823 824 auto e12 = std::upper_bound(pVecm[(*t1)].begin(), 825 pVecm[(*t1)].end(), 826 energyTransfer); 827 auto e11 = e12 - 1; 828 829 auto e22 = std::upper_bound(pVecm[(*t2)].begin(), 830 pVecm[(*t2)].end(), 831 energyTransfer); 832 auto e21 = e22 - 1; 833 834 valueT1 = *t1; 835 valueT2 = *t2; 836 valueE21 = *e21; 837 valueE22 = *e22; 838 valueE12 = *e12; 839 valueE11 = *e11; 840 841 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11]; 842 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12]; 843 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21]; 844 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22]; 845 846 } 847 848 G4double xsProduct = xs11 * xs12 * xs21 * xs22; 849 if (xsProduct != 0.) 850 { 851 sigma = QuadInterpolator(valueE11, 852 valueE12, 853 valueE21, 854 valueE22, 855 xs11, 856 xs12, 857 xs21, 858 xs22, 859 valueT1, 860 valueT2, 861 k, 862 energyTransfer); 863 } 864 } 865 866 return sigma; 867 } 868 869 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 870 871 G4double G4DNABornIonisationModel1::Interpolate(G4double e1, 872 G4double e2, 873 G4double e, 874 G4double xs1, 875 G4double xs2) 876 { 877 G4double value = 0.; 878 879 // Log-log interpolation by default 880 881 if (e1 != 0 && e2 != 0 && (std::log10(e2) - std::log10(e1)) != 0 882 && !fasterCode) 883 { 884 G4double a = (std::log10(xs2) - std::log10(xs1)) 885 / (std::log10(e2) - std::log10(e1)); 886 G4double b = std::log10(xs2) - a * std::log10(e2); 887 G4double sigma = a * std::log10(e) + b; 888 value = (std::pow(10., sigma)); 889 } 890 891 // Switch to lin-lin interpolation 892 /* 893 if ((e2-e1)!=0) 894 { 895 G4double d1 = xs1; 896 G4double d2 = xs2; 897 value = (d1 + (d2 - d1)*(e - e1)/ (e2 - e1)); 898 } 899 */ 900 901 // Switch to log-lin interpolation for faster code 902 if ((e2 - e1) != 0 && xs1 != 0 && xs2 != 0 && fasterCode) 903 { 904 G4double d1 = std::log10(xs1); 905 G4double d2 = std::log10(xs2); 906 value = std::pow(10., (d1 + (d2 - d1) * (e - e1) / (e2 - e1))); 907 } 908 909 // Switch to lin-lin interpolation for faster code 910 // in case one of xs1 or xs2 (=cum proba) value is zero 911 912 if ((e2 - e1) != 0 && (xs1 == 0 || xs2 == 0) && fasterCode) 913 { 914 G4double d1 = xs1; 915 G4double d2 = xs2; 916 value = (d1 + (d2 - d1) * (e - e1) / (e2 - e1)); 917 } 918 919 /* 920 G4cout 921 << e1 << " " 922 << e2 << " " 923 << e << " " 924 << xs1 << " " 925 << xs2 << " " 926 << value 927 << G4endl; 928 */ 929 930 return value; 931 } 932 933 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 934 935 G4double G4DNABornIonisationModel1::QuadInterpolator(G4double e11, 936 G4double e12, 937 G4double e21, 938 G4double e22, 939 G4double xs11, 940 G4double xs12, 941 G4double xs21, 942 G4double xs22, 943 G4double t1, 944 G4double t2, 945 G4double t, 946 G4double e) 947 { 948 G4double interpolatedvalue1 = Interpolate(e11, e12, e, xs11, xs12); 949 G4double interpolatedvalue2 = Interpolate(e21, e22, e, xs21, xs22); 950 G4double value = Interpolate(t1, 951 t2, 952 t, 953 interpolatedvalue1, 954 interpolatedvalue2); 955 956 return value; 957 } 958 959 G4double G4DNABornIonisationModel1::GetPartialCrossSection(const G4Material* /*material*/, 960 G4int level, 961 const G4ParticleDefinition* particle, 962 G4double kineticEnergy) 963 { 964 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos; 965 pos = tableData.find(particle->GetParticleName()); 966 967 if (pos != tableData.end()) 968 { 969 G4DNACrossSectionDataSet* table = pos->second; 970 return table->GetComponent(level)->FindValue(kineticEnergy); 971 } 972 973 return 0; 974 } 975 976 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 977 978 G4int G4DNABornIonisationModel1::RandomSelect(G4double k, 979 const G4String& particle) 980 { 981 G4int level = 0; 982 983 std::map<G4String, G4DNACrossSectionDataSet*, std::less<G4String> >::iterator pos; 984 pos = tableData.find(particle); 985 986 if (pos != tableData.end()) 987 { 988 G4DNACrossSectionDataSet* table = pos->second; 989 990 if (table != nullptr) 991 { 992 auto valuesBuffer = new G4double[table->NumberOfComponents()]; 993 const auto n = (G4int)table->NumberOfComponents(); 994 G4int i(n); 995 G4double value = 0.; 996 997 while (i > 0) 998 { 999 i--; 1000 valuesBuffer[i] = table->GetComponent(i)->FindValue(k); 1001 value += valuesBuffer[i]; 1002 } 1003 1004 value *= G4UniformRand(); 1005 1006 i = n; 1007 1008 while (i > 0) 1009 { 1010 i--; 1011 1012 if (valuesBuffer[i] > value) 1013 { 1014 delete[] valuesBuffer; 1015 return i; 1016 } 1017 value -= valuesBuffer[i]; 1018 } 1019 1020 1021 delete[] valuesBuffer; 1022 1023 } 1024 } else 1025 { 1026 G4Exception("G4DNABornIonisationModel1::RandomSelect", 1027 "em0002", 1028 FatalException, 1029 "Model not applicable to particle type."); 1030 } 1031 1032 return level; 1033 } 1034 1035 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1036 1037 G4double G4DNABornIonisationModel1::RandomizeEjectedElectronEnergyFromCumulatedDcs(G4ParticleDefinition* particleDefinition, 1038 G4double k, 1039 G4int shell) 1040 { 1041 //G4cout << "*** FAST computation for " << " " << particleDefinition->GetParticleName() << G4endl; 1042 1043 G4double secondaryElectronKineticEnergy = 0.; 1044 1045 G4double random = G4UniformRand(); 1046 1047 secondaryElectronKineticEnergy = TransferedEnergy(particleDefinition, 1048 k / eV, 1049 shell, 1050 random) * eV 1051 - waterStructure.IonisationEnergy(shell); 1052 1053 //G4cout << RandomTransferedEnergy(particleDefinition, k/eV, shell) << G4endl; 1054 1055 if (secondaryElectronKineticEnergy < 0.) 1056 return 0.; 1057 // 1058 1059 return secondaryElectronKineticEnergy; 1060 } 1061 1062 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 1063 1064 G4double G4DNABornIonisationModel1::TransferedEnergy(G4ParticleDefinition* particleDefinition, 1065 G4double k, 1066 G4int ionizationLevelIndex, 1067 G4double random) 1068 { 1069 G4double nrj = 0.; 1070 1071 G4double valueK1 = 0; 1072 G4double valueK2 = 0; 1073 G4double valuePROB21 = 0; 1074 G4double valuePROB22 = 0; 1075 G4double valuePROB12 = 0; 1076 G4double valuePROB11 = 0; 1077 1078 G4double nrjTransf11 = 0; 1079 G4double nrjTransf12 = 0; 1080 G4double nrjTransf21 = 0; 1081 G4double nrjTransf22 = 0; 1082 1083 if (particleDefinition == G4Electron::ElectronDefinition()) 1084 { 1085 // Protection against out of boundary access - electron case : 1 MeV 1086 if (k==eTdummyVec.back()) k=k*(1.-1e-12); 1087 // 1088 1089 // k should be in eV 1090 auto k2 = std::upper_bound(eTdummyVec.begin(), 1091 eTdummyVec.end(), 1092 k); 1093 auto k1 = k2 - 1; 1094 1095 /* 1096 G4cout << "----> k=" << k 1097 << " " << *k1 1098 << " " << *k2 1099 << " " << random 1100 << " " << ionizationLevelIndex 1101 << " " << eProbaShellMap[ionizationLevelIndex][(*k1)].back() 1102 << " " << eProbaShellMap[ionizationLevelIndex][(*k2)].back() 1103 << G4endl; 1104 */ 1105 1106 // SI : the following condition avoids situations where random >last vector element 1107 if (random <= eProbaShellMap[ionizationLevelIndex][(*k1)].back() 1108 && random <= eProbaShellMap[ionizationLevelIndex][(*k2)].back()) 1109 { 1110 auto prob12 = 1111 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k1)].begin(), 1112 eProbaShellMap[ionizationLevelIndex][(*k1)].end(), 1113 random); 1114 1115 auto prob11 = prob12 - 1; 1116 1117 auto prob22 = 1118 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k2)].begin(), 1119 eProbaShellMap[ionizationLevelIndex][(*k2)].end(), 1120 random); 1121 1122 auto prob21 = prob22 - 1; 1123 1124 valueK1 = *k1; 1125 valueK2 = *k2; 1126 valuePROB21 = *prob21; 1127 valuePROB22 = *prob22; 1128 valuePROB12 = *prob12; 1129 valuePROB11 = *prob11; 1130 1131 /* 1132 G4cout << " " << random << " " << valuePROB11 << " " 1133 << valuePROB12 << " " << valuePROB21 << " " << valuePROB22 << G4endl; 1134 */ 1135 1136 nrjTransf11 = eNrjTransfData[ionizationLevelIndex][valueK1][valuePROB11]; 1137 nrjTransf12 = eNrjTransfData[ionizationLevelIndex][valueK1][valuePROB12]; 1138 nrjTransf21 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21]; 1139 nrjTransf22 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22]; 1140 1141 /* 1142 G4cout << " " << ionizationLevelIndex << " " 1143 << random << " " <<valueK1 << " " << valueK2 << G4endl; 1144 1145 G4cout << " " << random << " " << nrjTransf11 << " " 1146 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl; 1147 */ 1148 1149 } 1150 1151 // Avoids cases where cum xs is zero for k1 and is not for k2 (with always k1<k2) 1152 if (random > eProbaShellMap[ionizationLevelIndex][(*k1)].back()) 1153 { 1154 auto prob22 = 1155 std::upper_bound(eProbaShellMap[ionizationLevelIndex][(*k2)].begin(), 1156 eProbaShellMap[ionizationLevelIndex][(*k2)].end(), 1157 random); 1158 1159 auto prob21 = prob22 - 1; 1160 1161 valueK1 = *k1; 1162 valueK2 = *k2; 1163 valuePROB21 = *prob21; 1164 valuePROB22 = *prob22; 1165 1166 //G4cout << " " << random << " " << valuePROB21 << " " << valuePROB22 << G4endl; 1167 1168 nrjTransf21 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21]; 1169 nrjTransf22 = eNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22]; 1170 1171 G4double interpolatedvalue2 = Interpolate(valuePROB21, 1172 valuePROB22, 1173 random, 1174 nrjTransf21, 1175 nrjTransf22); 1176 1177 // zeros are explicitly set 1178 1179 G4double value = Interpolate(valueK1, valueK2, k, 0., interpolatedvalue2); 1180 1181 /* 1182 G4cout << " " << ionizationLevelIndex << " " 1183 << random << " " <<valueK1 << " " << valueK2 << G4endl; 1184 1185 G4cout << " " << random << " " << nrjTransf11 << " " 1186 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl; 1187 1188 G4cout << "ici" << " " << value << G4endl; 1189 */ 1190 1191 return value; 1192 } 1193 } 1194 // 1195 else if (particleDefinition == G4Proton::ProtonDefinition()) 1196 { 1197 // Protection against out of boundary access - proton case : 100 MeV 1198 if (k==pTdummyVec.back()) k=k*(1.-1e-12); 1199 // 1200 1201 // k should be in eV 1202 1203 auto k2 = std::upper_bound(pTdummyVec.begin(), 1204 pTdummyVec.end(), 1205 k); 1206 1207 auto k1 = k2 - 1; 1208 1209 /* 1210 G4cout << "----> k=" << k 1211 << " " << *k1 1212 << " " << *k2 1213 << " " << random 1214 << " " << ionizationLevelIndex 1215 << " " << pProbaShellMap[ionizationLevelIndex][(*k1)].back() 1216 << " " << pProbaShellMap[ionizationLevelIndex][(*k2)].back() 1217 << G4endl; 1218 */ 1219 1220 // SI : the following condition avoids situations where random > last vector element, 1221 // for eg. when the last element is zero 1222 if (random <= pProbaShellMap[ionizationLevelIndex][(*k1)].back() 1223 && random <= pProbaShellMap[ionizationLevelIndex][(*k2)].back()) 1224 { 1225 auto prob12 = 1226 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k1)].begin(), 1227 pProbaShellMap[ionizationLevelIndex][(*k1)].end(), 1228 random); 1229 1230 auto prob11 = prob12 - 1; 1231 1232 auto prob22 = 1233 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k2)].begin(), 1234 pProbaShellMap[ionizationLevelIndex][(*k2)].end(), 1235 random); 1236 1237 auto prob21 = prob22 - 1; 1238 1239 valueK1 = *k1; 1240 valueK2 = *k2; 1241 valuePROB21 = *prob21; 1242 valuePROB22 = *prob22; 1243 valuePROB12 = *prob12; 1244 valuePROB11 = *prob11; 1245 1246 /* 1247 G4cout << " " << random << " " << valuePROB11 << " " 1248 << valuePROB12 << " " << valuePROB21 << " " << valuePROB22 << G4endl; 1249 */ 1250 1251 nrjTransf11 = pNrjTransfData[ionizationLevelIndex][valueK1][valuePROB11]; 1252 nrjTransf12 = pNrjTransfData[ionizationLevelIndex][valueK1][valuePROB12]; 1253 nrjTransf21 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21]; 1254 nrjTransf22 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22]; 1255 1256 /* 1257 G4cout << " " << ionizationLevelIndex << " " 1258 << random << " " <<valueK1 << " " << valueK2 << G4endl; 1259 1260 G4cout << " " << random << " " << nrjTransf11 << " " 1261 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl; 1262 */ 1263 } 1264 1265 // Avoids cases where cum xs is zero for k1 and is not for k2 (with always k1<k2) 1266 1267 if (random > pProbaShellMap[ionizationLevelIndex][(*k1)].back()) 1268 { 1269 auto prob22 = 1270 std::upper_bound(pProbaShellMap[ionizationLevelIndex][(*k2)].begin(), 1271 pProbaShellMap[ionizationLevelIndex][(*k2)].end(), 1272 random); 1273 1274 auto prob21 = prob22 - 1; 1275 1276 valueK1 = *k1; 1277 valueK2 = *k2; 1278 valuePROB21 = *prob21; 1279 valuePROB22 = *prob22; 1280 1281 //G4cout << " " << random << " " << valuePROB21 << " " << valuePROB22 << G4endl; 1282 1283 nrjTransf21 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB21]; 1284 nrjTransf22 = pNrjTransfData[ionizationLevelIndex][valueK2][valuePROB22]; 1285 1286 G4double interpolatedvalue2 = Interpolate(valuePROB21, 1287 valuePROB22, 1288 random, 1289 nrjTransf21, 1290 nrjTransf22); 1291 1292 // zeros are explicitly set 1293 1294 G4double value = Interpolate(valueK1, valueK2, k, 0., interpolatedvalue2); 1295 1296 /* 1297 G4cout << " " << ionizationLevelIndex << " " 1298 << random << " " <<valueK1 << " " << valueK2 << G4endl; 1299 1300 G4cout << " " << random << " " << nrjTransf11 << " " 1301 << nrjTransf12 << " " << nrjTransf21 << " " <<nrjTransf22 << G4endl; 1302 1303 G4cout << "ici" << " " << value << G4endl; 1304 */ 1305 1306 return value; 1307 } 1308 } 1309 // End electron and proton cases 1310 1311 G4double nrjTransfProduct = nrjTransf11 * nrjTransf12 * nrjTransf21 1312 * nrjTransf22; 1313 //G4cout << "nrjTransfProduct=" << nrjTransfProduct << G4endl; 1314 1315 if (nrjTransfProduct != 0.) 1316 { 1317 nrj = QuadInterpolator(valuePROB11, 1318 valuePROB12, 1319 valuePROB21, 1320 valuePROB22, 1321 nrjTransf11, 1322 nrjTransf12, 1323 nrjTransf21, 1324 nrjTransf22, 1325 valueK1, 1326 valueK2, 1327 k, 1328 random); 1329 } 1330 //G4cout << nrj << endl; 1331 1332 return nrj; 1333 } 1334