Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/electromagnetic/dna/models/include/G4DNAOneStepThermalizationModel.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // Author: Mathieu Karamitros
 28 
 29 // The code is developed in the framework of the ESA AO7146
 30 //
 31 // We would be very happy hearing from you, send us your feedback! :)
 32 //
 33 // In order for Geant4-DNA to be maintained and still open-source,
 34 // article citations are crucial. 
 35 // If you use Geant4-DNA chemistry and you publish papers about your software, 
 36 // in addition to the general paper on Geant4-DNA:
 37 //
 38 // Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178
 39 //
 40 // we would be very happy if you could please also cite the following
 41 // reference papers on chemistry:
 42 //
 43 // J. Comput. Phys. 274 (2014) 841-882
 44 // Prog. Nucl. Sci. Tec. 2 (2011) 503-508 
 45 
 46 #ifndef G4DNAOneStepThermalizationModel_hh
 47 #define G4DNAOneStepThermalizationModel_hh
 48 
 49 #include <memory>
 50 #include "G4VEmModel.hh"
 51 
 52 class G4ITNavigator;
 53 class G4Navigator;
 54 
 55 namespace DNA{
 56   namespace Penetration{
 57     //-----------------------
 58     /*
 59      * Article: Jintana Meesungnoen, Jean-Paul Jay-Gerin,
 60      *          Abdelali Filali-Mouhim, and Samlee Mankhetkorn (2002)
 61      *          Low-Energy Electron Penetration Range in Liquid Water.
 62      *          Radiation Research: November 2002, Vol. 158, No. 5, pp.657-660.
 63      */
 64     struct Meesungnoen2002{
 65       static void GetPenetration(G4double energy,
 66                                  G4ThreeVector& displacement);
 67       static double GetRmean(double energy);
 68       //-----
 69       // Polynomial fit of Meesungnoen, 2002
 70       static const double gCoeff[13];
 71     };
 72     
 73     struct Meesungnoen2002_amorphous{
 74     static void GetPenetration(G4double energy,
 75                  G4ThreeVector& displacement);
 76     static double GetRmean(double energy);
 77     //-----
 78     // Polynomial fit of Meesungnoen, 2002
 79     static const double gCoeff[7];
 80     };
 81 
 82     //-----------------------
 83     /*
 84      * Article: Kreipl M S, Friedland W, Paretzke H G (2009) Time- and
 85      *      space-resolved Monte Carlo study of water radiolysis
 86      *      for photon, electron and ion irradiation.
 87      *      Radiat Environ Biophys 48:11-20
 88      */
 89 
 90     struct Kreipl2009{
 91       static void GetPenetration(G4double energy,
 92                                  G4ThreeVector& displacement);
 93     };
 94 
 95     //-----------------------
 96     /*
 97      * Article: Terrissol M, Beaudre A (1990) Simulation of space and time 
 98      *          evolution of radiolytic species induced by electrons in water.
 99      *          Radiat Prot Dosimetry 31:171–175
100      */
101     struct Terrisol1990{
102       static void GetPenetration(G4double energy,
103                                  G4ThreeVector& displacement);
104       static double GetRmean(double energy);
105       static double Get3DStdDeviation(double energy);
106       //-----
107       // Terrisol, 1990
108       static const double gEnergies_T1990[11];
109       static const double gStdDev_T1990[11];
110     };
111     
112     //-----------------------
113     /*
114      * Article: Ritchie RH, Hamm RN, Turner JE, Bolch WE (1994) Interaction of
115      *          low-energy electrons with condensed matter: relevance for track
116      *          structure.
117      *          Computational approaches in molecular radiation biology, Plenum,
118      *          New York, Vol. 63, pp. 155–166
119      *          Note: also used in Ballarini et al., 2000
120      */
121     struct Ritchie1994{
122       static void GetPenetration(G4double energy,
123                                  G4ThreeVector& displacement);
124       static double GetRmean(double energy);
125     };
126   }
127 }
128 
129 /**
130  * When an electron reaches the highest energy domain of
131  * G4DNAOneStepThermalizationModel,
132  * it is then automatically converted into a solvated electron and displace 
133  * from its original position using a published thermalization statistic.
134  */
135 
136 template<typename MODEL=DNA::Penetration::Meesungnoen2002>
137 class G4TDNAOneStepThermalizationModel : public G4VEmModel
138 {
139 public:
140   using Model = MODEL;
141   G4TDNAOneStepThermalizationModel(const G4ParticleDefinition* p = nullptr,
142                                    const G4String& nam =
143                                       "DNAOneStepThermalizationModel");
144   ~G4TDNAOneStepThermalizationModel() override;
145 
146   void Initialise(const G4ParticleDefinition*, const G4DataVector&) override;
147 
148   G4double CrossSectionPerVolume(const G4Material* material,
149                                          const G4ParticleDefinition* p,
150                                          G4double ekin,
151                                          G4double emin,
152                                          G4double emax) override;
153 
154   void SampleSecondaries(std::vector<G4DynamicParticle*>*,
155                                  const G4MaterialCutsCouple*,
156                                  const G4DynamicParticle*,
157                                  G4double tmin,
158                                  G4double maxEnergy) override;
159 
160   inline void SetVerbose(int flag){
161     fVerboseLevel = flag;
162   }
163 
164   void GetPenetration(G4double energy,
165                       G4ThreeVector& displacement);
166 
167   double GetRmean(double energy);
168 
169 protected:
170   const std::vector<G4double>* fpWaterDensity;
171 
172   G4ParticleChangeForGamma* fpParticleChangeForGamma;
173   G4bool fIsInitialised{false};
174   G4int fVerboseLevel;
175   std::unique_ptr<G4Navigator> fpNavigator;
176 
177 private:
178   G4TDNAOneStepThermalizationModel&
179   operator=(const G4TDNAOneStepThermalizationModel &right);
180   G4TDNAOneStepThermalizationModel(const G4TDNAOneStepThermalizationModel&);
181 };
182 
183 #include "G4DNAOneStepThermalizationModel.hpp"
184 
185 using G4DNAOneStepThermalizationModel = G4TDNAOneStepThermalizationModel<DNA::Penetration::Meesungnoen2002>;
186 
187 // typedef G4TDNAOneStepThermalizationModel<DNA::Penetration::Terrisol1990> G4DNAOneStepThermalizationModel;
188 // Note: if you use the above distribution, it would be
189 // better to follow the electrons down to 6 eV and only then apply
190 // the one step thermalization
191 
192 class G4DNASolvationModelFactory
193 {
194 public:
195   /// @param penetrationType Available options:
196   ///        Meesungnoen2002, Terrisol1990, Ritchie1994
197   static G4VEmModel* Create(const G4String& penetrationModel);
198   
199   /// \brief One step thermalization model can be chosen via macro using
200   ///        /process/dna/e-SolvationSubType Ritchie1994
201   /// \return Create the model defined via the command macro
202   ///         /process/dna/e-SolvationSubType
203   ///         In case the command is unused, it returns the default model set in
204   ///         G4EmParameters.
205   static G4VEmModel* GetMacroDefinedModel();
206 };
207 
208 #endif
209