Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // Author: Mathieu Karamitros 28 29 // The code is developed in the framework of the ESA AO7146 30 // 31 // We would be very happy hearing from you, send us your feedback! :) 32 // 33 // In order for Geant4-DNA to be maintained and still open-source, 34 // article citations are crucial. 35 // If you use Geant4-DNA chemistry and you publish papers about your software, 36 // in addition to the general paper on Geant4-DNA: 37 // 38 // Int. J. Model. Simul. Sci. Comput. 1 (2010) 157–178 39 // 40 // we would be very happy if you could please also cite the following 41 // reference papers on chemistry: 42 // 43 // J. Comput. Phys. 274 (2014) 841-882 44 // Prog. Nucl. Sci. Tec. 2 (2011) 503-508 45 46 #ifndef G4DNAOneStepThermalizationModel_hh 47 #define G4DNAOneStepThermalizationModel_hh 48 49 #include <memory> 50 #include "G4VEmModel.hh" 51 52 class G4ITNavigator; 53 class G4Navigator; 54 55 namespace DNA{ 56 namespace Penetration{ 57 //----------------------- 58 /* 59 * Article: Jintana Meesungnoen, Jean-Paul Jay-Gerin, 60 * Abdelali Filali-Mouhim, and Samlee Mankhetkorn (2002) 61 * Low-Energy Electron Penetration Range in Liquid Water. 62 * Radiation Research: November 2002, Vol. 158, No. 5, pp.657-660. 63 */ 64 struct Meesungnoen2002{ 65 static void GetPenetration(G4double energy, 66 G4ThreeVector& displacement); 67 static double GetRmean(double energy); 68 //----- 69 // Polynomial fit of Meesungnoen, 2002 70 static const double gCoeff[13]; 71 }; 72 73 struct Meesungnoen2002_amorphous{ 74 static void GetPenetration(G4double energy, 75 G4ThreeVector& displacement); 76 static double GetRmean(double energy); 77 //----- 78 // Polynomial fit of Meesungnoen, 2002 79 static const double gCoeff[7]; 80 }; 81 82 //----------------------- 83 /* 84 * Article: Kreipl M S, Friedland W, Paretzke H G (2009) Time- and 85 * space-resolved Monte Carlo study of water radiolysis 86 * for photon, electron and ion irradiation. 87 * Radiat Environ Biophys 48:11-20 88 */ 89 90 struct Kreipl2009{ 91 static void GetPenetration(G4double energy, 92 G4ThreeVector& displacement); 93 }; 94 95 //----------------------- 96 /* 97 * Article: Terrissol M, Beaudre A (1990) Simulation of space and time 98 * evolution of radiolytic species induced by electrons in water. 99 * Radiat Prot Dosimetry 31:171–175 100 */ 101 struct Terrisol1990{ 102 static void GetPenetration(G4double energy, 103 G4ThreeVector& displacement); 104 static double GetRmean(double energy); 105 static double Get3DStdDeviation(double energy); 106 //----- 107 // Terrisol, 1990 108 static const double gEnergies_T1990[11]; 109 static const double gStdDev_T1990[11]; 110 }; 111 112 //----------------------- 113 /* 114 * Article: Ritchie RH, Hamm RN, Turner JE, Bolch WE (1994) Interaction of 115 * low-energy electrons with condensed matter: relevance for track 116 * structure. 117 * Computational approaches in molecular radiation biology, Plenum, 118 * New York, Vol. 63, pp. 155–166 119 * Note: also used in Ballarini et al., 2000 120 */ 121 struct Ritchie1994{ 122 static void GetPenetration(G4double energy, 123 G4ThreeVector& displacement); 124 static double GetRmean(double energy); 125 }; 126 } 127 } 128 129 /** 130 * When an electron reaches the highest energy domain of 131 * G4DNAOneStepThermalizationModel, 132 * it is then automatically converted into a solvated electron and displace 133 * from its original position using a published thermalization statistic. 134 */ 135 136 template<typename MODEL=DNA::Penetration::Meesungnoen2002> 137 class G4TDNAOneStepThermalizationModel : public G4VEmModel 138 { 139 public: 140 using Model = MODEL; 141 G4TDNAOneStepThermalizationModel(const G4ParticleDefinition* p = nullptr, 142 const G4String& nam = 143 "DNAOneStepThermalizationModel"); 144 ~G4TDNAOneStepThermalizationModel() override; 145 146 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 147 148 G4double CrossSectionPerVolume(const G4Material* material, 149 const G4ParticleDefinition* p, 150 G4double ekin, 151 G4double emin, 152 G4double emax) override; 153 154 void SampleSecondaries(std::vector<G4DynamicParticle*>*, 155 const G4MaterialCutsCouple*, 156 const G4DynamicParticle*, 157 G4double tmin, 158 G4double maxEnergy) override; 159 160 inline void SetVerbose(int flag){ 161 fVerboseLevel = flag; 162 } 163 164 void GetPenetration(G4double energy, 165 G4ThreeVector& displacement); 166 167 double GetRmean(double energy); 168 169 protected: 170 const std::vector<G4double>* fpWaterDensity; 171 172 G4ParticleChangeForGamma* fpParticleChangeForGamma; 173 G4bool fIsInitialised{false}; 174 G4int fVerboseLevel; 175 std::unique_ptr<G4Navigator> fpNavigator; 176 177 private: 178 G4TDNAOneStepThermalizationModel& 179 operator=(const G4TDNAOneStepThermalizationModel &right); 180 G4TDNAOneStepThermalizationModel(const G4TDNAOneStepThermalizationModel&); 181 }; 182 183 #include "G4DNAOneStepThermalizationModel.hpp" 184 185 using G4DNAOneStepThermalizationModel = G4TDNAOneStepThermalizationModel<DNA::Penetration::Meesungnoen2002>; 186 187 // typedef G4TDNAOneStepThermalizationModel<DNA::Penetration::Terrisol1990> G4DNAOneStepThermalizationModel; 188 // Note: if you use the above distribution, it would be 189 // better to follow the electrons down to 6 eV and only then apply 190 // the one step thermalization 191 192 class G4DNASolvationModelFactory 193 { 194 public: 195 /// @param penetrationType Available options: 196 /// Meesungnoen2002, Terrisol1990, Ritchie1994 197 static G4VEmModel* Create(const G4String& penetrationModel); 198 199 /// \brief One step thermalization model can be chosen via macro using 200 /// /process/dna/e-SolvationSubType Ritchie1994 201 /// \return Create the model defined via the command macro 202 /// /process/dna/e-SolvationSubType 203 /// In case the command is unused, it returns the default model set in 204 /// G4EmParameters. 205 static G4VEmModel* GetMacroDefinedModel(); 206 }; 207 208 #endif 209