Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // File name: G4UrbanAdjointMscModel 27 // 28 // Author: Laszlo Urban 29 // 30 // Class Description: 31 // Implementation of the model of multiple scattering based on 32 // H.W.Lewis Phys Rev 78 (1950) 526 and L.Urban model 33 // ------------------------------------------------------------------- 34 35 #ifndef G4UrbanAdjointMscModel_h 36 #define G4UrbanAdjointMscModel_h 1 37 38 #include "G4Electron.hh" 39 #include "G4Exp.hh" 40 #include "G4Log.hh" 41 #include "G4MscStepLimitType.hh" 42 #include "G4VMscModel.hh" 43 44 class G4LossTableManager; 45 class G4MaterialCutsCouple; 46 class G4ParticleChangeForMSC; 47 class G4ParticleDefinition; 48 class G4SafetyHelper; 49 50 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 51 52 class G4UrbanAdjointMscModel : public G4VMscModel 53 { 54 public: 55 explicit G4UrbanAdjointMscModel(const G4String& nam = "UrbanMsc"); 56 57 ~G4UrbanAdjointMscModel() override; 58 59 void Initialise(const G4ParticleDefinition*, const G4DataVector&) override; 60 61 void StartTracking(G4Track*) override; 62 63 G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition* particle, 64 G4double KineticEnergy, 65 G4double AtomicNumber, 66 G4double AtomicWeight = 0., 67 G4double cut = 0., 68 G4double emax = DBL_MAX) override; 69 70 G4ThreeVector& SampleScattering(const G4ThreeVector&, 71 G4double safety) override; 72 73 G4double ComputeTruePathLengthLimit(const G4Track& track, 74 G4double& currentMinimalStep) override; 75 76 G4double ComputeGeomPathLength(G4double truePathLength) override; 77 78 G4double ComputeTrueStepLength(G4double geomStepLength) override; 79 80 G4double ComputeTheta0(G4double truePathLength, G4double KineticEnergy); 81 82 inline void SetNewDisplacementFlag(G4bool); 83 84 G4UrbanAdjointMscModel& operator=(const G4UrbanAdjointMscModel& right) = 85 delete; 86 G4UrbanAdjointMscModel(const G4UrbanAdjointMscModel&) = delete; 87 88 private: 89 G4double SampleCosineTheta(G4double trueStepLength, G4double KineticEnergy); 90 91 void SampleDisplacement(G4double sinTheta, G4double phi); 92 93 void SampleDisplacementNew(G4double sinTheta, G4double phi); 94 95 inline void SetParticle(const G4ParticleDefinition*); 96 97 inline void UpdateCache(); 98 99 inline G4double Randomizetlimit(); 100 101 inline G4double SimpleScattering(G4double xmeanth, G4double x2meanth); 102 103 CLHEP::HepRandomEngine* rndmEngineMod; 104 105 const G4ParticleDefinition* particle; 106 const G4ParticleDefinition* positron; 107 G4ParticleChangeForMSC* fParticleChange; 108 109 const G4MaterialCutsCouple* couple; 110 G4LossTableManager* theManager; 111 112 G4double mass; 113 G4double charge, ChargeSquare; 114 G4double masslimite, lambdalimit, fr; 115 116 G4double taubig; 117 G4double tausmall; 118 G4double taulim; 119 G4double currentTau; 120 G4double tlimit; 121 G4double tlimitmin; 122 G4double tlimitminfix, tlimitminfix2; 123 G4double tgeom; 124 125 G4double geombig; 126 G4double geommin; 127 G4double geomlimit; 128 G4double skindepth; 129 G4double smallstep; 130 131 G4double presafety; 132 133 G4double lambda0; 134 G4double lambdaeff; 135 G4double tPathLength; 136 G4double zPathLength; 137 G4double par1, par2, par3; 138 139 G4double stepmin; 140 141 G4double currentKinEnergy; 142 G4double currentRange; 143 G4double rangeinit; 144 G4double currentRadLength; 145 146 G4double Zold; 147 G4double Zeff, Z2, Z23, lnZ; 148 G4double coeffth1, coeffth2; 149 G4double coeffc1, coeffc2, coeffc3, coeffc4; 150 151 G4double rangecut; 152 G4double drr, finalr; 153 154 G4int currentMaterialIndex; 155 156 G4bool firstStep; 157 G4bool insideskin; 158 159 G4bool latDisplasmentbackup; 160 G4bool displacementFlag; 161 }; 162 163 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 164 inline void G4UrbanAdjointMscModel::SetNewDisplacementFlag(G4bool val) 165 { 166 displacementFlag = val; 167 } 168 169 inline void G4UrbanAdjointMscModel::SetParticle(const G4ParticleDefinition* p) 170 { 171 const G4ParticleDefinition* p1 = p; 172 173 if(p->GetParticleName() == "adj_e-") 174 p1 = G4Electron::Electron(); 175 176 if(p1 != particle) 177 { 178 particle = p1; 179 mass = p1->GetPDGMass(); 180 charge = p1->GetPDGCharge() / CLHEP::eplus; 181 ChargeSquare = charge * charge; 182 } 183 } 184 185 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 186 inline G4double G4UrbanAdjointMscModel::Randomizetlimit() 187 { 188 G4double temptlimit = tlimit; 189 if(tlimit > tlimitmin) 190 { 191 G4double delta = tlimit - tlimitmin; 192 do 193 { 194 temptlimit = G4RandGauss::shoot(rndmEngineMod, tlimit, 0.1 * delta); 195 // Loop checking, 10-Apr-2016, Laszlo Urban 196 } while((temptlimit < tlimit - delta) || (temptlimit > tlimit + delta)); 197 } 198 else 199 { 200 temptlimit = tlimitmin; 201 } 202 203 return temptlimit; 204 } 205 206 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 207 inline void G4UrbanAdjointMscModel::UpdateCache() 208 { 209 lnZ = G4Log(Zeff); 210 // correction in theta0 formula 211 G4double w = G4Exp(lnZ / 6.); 212 G4double facz = 0.990395 + w * (-0.168386 + w * 0.093286); 213 coeffth1 = facz * (1. - 8.7780e-2 / Zeff); 214 coeffth2 = facz * (4.0780e-2 + 1.7315e-4 * Zeff); 215 216 // tail parameters 217 G4double Z13 = w * w; 218 coeffc1 = 2.3785 - Z13 * (4.1981e-1 - Z13 * 6.3100e-2); 219 coeffc2 = 4.7526e-1 + Z13 * (1.7694 - Z13 * 3.3885e-1); 220 coeffc3 = 2.3683e-1 - Z13 * (1.8111 - Z13 * 3.2774e-1); 221 coeffc4 = 1.7888e-2 + Z13 * (1.9659e-2 - Z13 * 2.6664e-3); 222 223 Z2 = Zeff * Zeff; 224 Z23 = Z13 * Z13; 225 226 Zold = Zeff; 227 } 228 229 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 230 inline G4double G4UrbanAdjointMscModel::SimpleScattering(G4double xmeanth, 231 G4double x2meanth) 232 { 233 // 'large angle scattering' 234 // 2 model functions with correct xmean and x2mean 235 G4double a = 236 (2. * xmeanth + 9. * x2meanth - 3.) / (2. * xmeanth - 3. * x2meanth + 1.); 237 G4double prob = (a + 2.) * xmeanth / a; 238 239 // sampling 240 G4double cth = 1.; 241 if(rndmEngineMod->flat() < prob) 242 { 243 cth = -1. + 2. * G4Exp(G4Log(rndmEngineMod->flat()) / (a + 1.)); 244 } 245 else 246 { 247 cth = -1. + 2. * rndmEngineMod->flat(); 248 } 249 return cth; 250 } 251 252 #endif 253