Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/cuts/src/G4VRangeToEnergyConverter.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4VRangeToEnergyConverter class implementation
 27 //
 28 // Author: H.Kurashige, 05 October 2002 - First implementation
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4VRangeToEnergyConverter.hh"
 32 #include "G4ParticleTable.hh"
 33 #include "G4Element.hh"
 34 #include "G4SystemOfUnits.hh"
 35 #include "G4Log.hh"
 36 #include "G4Exp.hh"
 37 #include "G4AutoLock.hh"
 38 
 39 namespace
 40 {
 41   G4Mutex theREMutex = G4MUTEX_INITIALIZER;
 42 }
 43 
 44 G4double G4VRangeToEnergyConverter::sEmin = CLHEP::keV;
 45 G4double G4VRangeToEnergyConverter::sEmax = 10.*CLHEP::GeV;
 46 
 47 std::vector<G4double>* G4VRangeToEnergyConverter::sEnergy = nullptr;
 48 
 49 G4int G4VRangeToEnergyConverter::sNbinPerDecade = 50;
 50 G4int G4VRangeToEnergyConverter::sNbin = 350;
 51 
 52 // --------------------------------------------------------------------
 53 G4VRangeToEnergyConverter::G4VRangeToEnergyConverter()
 54 {
 55   if(nullptr == sEnergy)
 56   {
 57     G4AutoLock l(&theREMutex);
 58     if(nullptr == sEnergy)
 59     {
 60       isFirstInstance = true;
 61     }
 62     l.unlock();
 63   }
 64   // this method defines lock itself
 65   if(isFirstInstance)
 66   {
 67     FillEnergyVector(CLHEP::keV, 10.0*CLHEP::GeV);
 68   }
 69 }
 70 
 71 // --------------------------------------------------------------------
 72 G4VRangeToEnergyConverter::~G4VRangeToEnergyConverter()
 73 {
 74   if(isFirstInstance)
 75   { 
 76     delete sEnergy;
 77     sEnergy = nullptr; 
 78     sEmin = CLHEP::keV;
 79     sEmax = 10.*CLHEP::GeV;
 80   }
 81 }
 82 
 83 // --------------------------------------------------------------------
 84 G4double G4VRangeToEnergyConverter::Convert(const G4double rangeCut, 
 85                                             const G4Material* material) 
 86 {
 87 #ifdef G4VERBOSE
 88   if (GetVerboseLevel()>3)
 89   {
 90     G4cout << "G4VRangeToEnergyConverter::Convert() - ";
 91     G4cout << "Convert for " << material->GetName() 
 92      << " with Range Cut " << rangeCut/mm << "[mm]" << G4endl;
 93   }
 94 #endif
 95 
 96   G4double cut = 0.0;
 97   if(fPDG == 22) 
 98   {  
 99     cut = ConvertForGamma(rangeCut, material);
100   }
101   else 
102   {
103     cut = ConvertForElectron(rangeCut, material);
104 
105     const G4double tune = 0.025*CLHEP::mm*CLHEP::g/CLHEP::cm3;
106     const G4double lowen = 30.*CLHEP::keV; 
107     if(cut < lowen)
108     {
109       //  corr. should be switched on smoothly   
110       cut /= (1.+(1.-cut/lowen)*tune/(rangeCut*material->GetDensity())); 
111     }
112   }
113 
114   cut = std::max(sEmin, std::min(cut, sEmax));
115   return cut;
116 }
117 
118 // --------------------------------------------------------------------
119 void G4VRangeToEnergyConverter::SetEnergyRange(const G4double lowedge,
120                                                const G4double highedge)
121 {
122   G4double ehigh = std::min(10.*CLHEP::GeV, highedge);
123   if(ehigh > lowedge)
124   {
125     FillEnergyVector(lowedge, ehigh);
126   }  
127 }
128 
129 // --------------------------------------------------------------------
130 G4double G4VRangeToEnergyConverter::GetLowEdgeEnergy()
131 {
132   return sEmin;
133 }
134     
135 // --------------------------------------------------------------------
136 G4double G4VRangeToEnergyConverter::GetHighEdgeEnergy()
137 {
138   return sEmax;
139 }
140 
141 // --------------------------------------------------------------------
142 
143 G4double G4VRangeToEnergyConverter::GetMaxEnergyCut()
144 {
145   return sEmax;
146 }
147 
148 // --------------------------------------------------------------------
149 void G4VRangeToEnergyConverter::SetMaxEnergyCut(const G4double value)
150 {
151   G4double ehigh = std::min(10.*CLHEP::GeV, value);
152   if(ehigh > sEmin)
153   {
154     FillEnergyVector(sEmin, ehigh);
155   }
156 }
157 
158 // --------------------------------------------------------------------
159 void G4VRangeToEnergyConverter::FillEnergyVector(const G4double emin, 
160                                                  const G4double emax)
161 {
162   if(emin != sEmin || emax != sEmax || nullptr == sEnergy) 
163   {
164     sEmin = emin;
165     sEmax = emax;
166     sNbin = sNbinPerDecade*G4lrint(std::log10(emax/emin));
167     if(nullptr == sEnergy) { sEnergy = new std::vector<G4double>; }
168     sEnergy->resize(sNbin + 1);
169     (*sEnergy)[0] = emin;
170     (*sEnergy)[sNbin] = emax;
171     G4double fact = G4Log(emax/emin)/sNbin;
172     for(G4int i=1; i<sNbin; ++i) { (*sEnergy)[i] = emin*G4Exp(i * fact); }
173   }
174 }
175 
176 // --------------------------------------------------------------------
177 G4double 
178 G4VRangeToEnergyConverter::ConvertForGamma(const G4double rangeCut, 
179                                            const G4Material* material)
180 {
181   const G4ElementVector* elm = material->GetElementVector();
182   const G4double* dens = material->GetAtomicNumDensityVector();
183 
184   // fill absorption length vector
185   G4int nelm = (G4int)material->GetNumberOfElements();
186   G4double range1 = 0.0;
187   G4double range2 = 0.0;
188   G4double e1 = 0.0;
189   G4double e2 = 0.0;
190   for (G4int i=0; i<sNbin; ++i)
191   {
192     e2 = (*sEnergy)[i];
193     G4double sig = 0.;
194     
195     for (G4int j=0; j<nelm; ++j)
196     {
197       sig += dens[j]*ComputeValue((*elm)[j]->GetZasInt(), e2); 
198     }
199     range2 = (sig > 0.0) ? 5./sig : DBL_MAX;
200     if(i == 0 || range2 < rangeCut)
201     {
202       e1 = e2;
203       range1 = range2;
204     }
205     else
206     {
207       break;
208     }
209   }
210   return LiniearInterpolation(e1, e2, range1, range2, rangeCut);
211 }
212 
213 // --------------------------------------------------------------------
214 G4double 
215 G4VRangeToEnergyConverter::ConvertForElectron(const G4double rangeCut, 
216                                               const G4Material* material)
217 {
218   const G4ElementVector* elm = material->GetElementVector();
219   const G4double* dens = material->GetAtomicNumDensityVector();
220 
221   // fill absorption length vector
222   G4int nelm = (G4int)material->GetNumberOfElements();
223   G4double dedx1 = 0.0;
224   G4double dedx2 = 0.0;
225   G4double range1 = 0.0;
226   G4double range2 = 0.0;
227   G4double e1 = 0.0;
228   G4double e2 = 0.0;
229   G4double range = 0.;
230   for (G4int i=0; i<sNbin; ++i)
231   {
232     e2 = (*sEnergy)[i];
233     dedx2 = 0.0;
234     for (G4int j=0; j<nelm; ++j)
235     {
236       dedx2 += dens[j]*ComputeValue((*elm)[j]->GetZasInt(), e2); 
237     }
238     range += (dedx1 + dedx2 > 0.0) ? 2*(e2 - e1)/(dedx1 + dedx2) : 0.0;
239     range2 = range;
240     if(range2 < rangeCut)
241     {
242       e1 = e2;
243       dedx1 = dedx2;
244       range1 = range2;
245     }
246     else
247     {
248       break;
249     }
250   }
251   return LiniearInterpolation(e1, e2, range1, range2, rangeCut);
252 }
253 
254 // --------------------------------------------------------------------
255