Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4BOptnLeadingParticle 27 // 28 // Class Description: 29 // 30 // A G4VBiasingOperation that implements the so-called "Leading 31 // particle biasing scheme". It is of interest in the shield problem 32 // to estimate the flux leaking from the shield. 33 // It works as follows: 34 // - it is intented for hadronic inelastic interaction 35 // - at each interaction, are kept: 36 // - the most energetic particle (the leading particle) 37 // - with unmodified weight 38 // - randomly one particle of each species 39 // - with this particle weight = n * primary_weight where 40 // n is the number of particles of this species 41 // 42 // Author: Marc Verderi, November 2019. 43 // -------------------------------------------------------------------- 44 45 #ifndef G4BOptnLeadingParticle_hh 46 #define G4BOptnLeadingParticle_hh 1 47 48 #include "G4VBiasingOperation.hh" 49 #include "G4ParticleChange.hh" 50 51 class G4BOptnLeadingParticle : public G4VBiasingOperation 52 { 53 public: 54 55 // -- Constructor : 56 G4BOptnLeadingParticle(const G4String& name); 57 // -- destructor: 58 virtual ~G4BOptnLeadingParticle(); 59 60 // -- Methods from G4VBiasingOperation interface: 61 // ---------------------------------------------- 62 // -- Unused: 63 virtual const G4VBiasingInteractionLaw* 64 ProvideOccurenceBiasingInteractionLaw( const G4BiasingProcessInterface*, 65 G4ForceCondition& ) { return nullptr; } 66 // -- Used: 67 virtual G4VParticleChange* 68 ApplyFinalStateBiasing( const G4BiasingProcessInterface*, // -- Method used for this biasing. The related biasing operator 69 const G4Track*, // -- returns this biasing operation at the post step do it level 70 const G4Step*, // -- when the wrapped process has won the interaction length race. 71 G4bool& ); // -- The wrapped process final state is then trimmed. 72 // -- Unused: 73 virtual G4double 74 DistanceToApplyOperation( const G4Track*, G4double, G4ForceCondition* ) { return 0.0; } 75 virtual G4VParticleChange* 76 GenerateBiasingFinalState( const G4Track*, const G4Step* ) { return nullptr; } 77 78 // -- The possibility is given to further apply a Russian roulette on tracks that are accompagnying the leading particle 79 // -- after the classical leading particle biasing algorithm has been applied. 80 // -- This is of interest when applying the technique to e+ -> gamma gamma for example. Given one gamma is leading, 81 // -- the second one is alone in its category, hence selected. With the Russian roulette it is then possible to keep 82 // -- this one randomly. This is also of interest for pi0 decays, or for brem. e- -> e- gamma where the e- or gamma 83 // -- are alone in their category. 84 void SetFurtherKillingProbability( G4double p ) // -- if p <= 0.0 the killing is ignored. 85 { 86 fRussianRouletteKillingProbability = p; 87 } 88 G4double GetFurtherKillingProbability() const 89 { 90 return fRussianRouletteKillingProbability; 91 } 92 93 private: 94 95 // -- Particle change used to return the trimmed final state: 96 G4ParticleChange fParticleChange; 97 G4double fRussianRouletteKillingProbability = -1.0; 98 }; 99 100 #endif 101