Version:
[ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]
1 -------------------------------------------------------------------
2
3
4 G4HadronInelasticQBBC
5 ---------------------
6 Hadron nuclear inelastic processes for all hadrons:
7 - proton inelastic:
8 - cross section: G4ParticleInelasticXS
9 - final-state: Fritiof coupled with Precompound/de-excitation (FTFP) above 3 GeV;
10 Bertini (BERT) between 1 and 6 GeV;
11 Binary coupled with Precompound/de-excitation (BIC) below 1.5 GeV
12 - neutron inelastic:
13 - cross section: G4NeutronInelasticXS
14 - final-state: FTFP > 3 GeV; 1 GeV < BERT < 6 GeV; BIC < 1.5 GeV
15 neutron capture:
16 - cross section: G4NeutronCaptureXS
17 - final-state: G4NeutronRadCapture
18 - charged pions inelastic:
19 - cross section: Barashenkov-Glauber-Gribov
20 - final-state: FTFP > 3 GeV; 1 GeV < BERT < 12 GeV; BIC < 1.5 GeV
21 - kaons inelastic:
22 - cross section: Glauber-Gribov
23 - final-state: FTFP > 3 GeV; BERT < 6 GeV
24 - hyperons inelastic:
25 - cross section: Glauber-Gribov
26 - final-state: FTFP > 3 GeV; BERT < 6 GeV
27 - anti_proton, anti_neutron, anti_deuteron, anti_triton, anti_He3, anti_alpha inelastic:
28 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
29 - final-state: FTFP for all energies
30 - anti_hyperons inelastic:
31 - cross section: Glauber-Gribov
32 - final-state: FTFP for all energies
33 - charm and bottom hadrons inelastic:
34 - cross section: Glauber-Gribov
35 - final-state: FTFP for all energies
36
37
38 G4HadronInelasticQBBC_ABLA
39 --------------------------
40 Similar to G4HadronInelasticQBBC, with the difference that for the final-state
41 of nuclear inelastic interactions of pion+, pion-, proton and neutron projectiles
42 the ABLA model (instead of the usual Precompound/de-excitation) is utilized for
43 nuclear de-excitation.
44
45
46 G4HadronPhysicsFTFP_BERT
47 ------------------------
48 Hadron nuclear inelastic processes for all hadrons:
49 - proton inelastic:
50 - cross section: Barashenkov-Glauber-Gribov (G4BGGNucleonInelasticXS)
51 - final-state: FTFP > 3 GeV; BERT < 6 GeV
52 - neutron inelastic:
53 - cross section: G4NeutronInelasticXS
54 - final-state: FTFP > 3 GeV; BERT < 6 GeV
55 neutron capture:
56 - cross section: G4NeutronCaptureXS
57 - final-state: G4NeutronRadCapture
58 - charged pions inelastic:
59 - cross section: Barashenkov-Glauber-Gribov
60 - final-state: FTFP > 3 GeV; BERT < 6 GeV
61 - kaons inelastic:
62 - cross section: Glauber-Gribov
63 - final-state: FTFP > 3 GeV; BERT < 6 GeV
64 - hyperons inelastic:
65 - cross section: Glauber-Gribov
66 - final-state: FTFP > 3 GeV; BERT < 6 GeV
67 - anti_proton, anti_neutron, anti_deuteron, anti_triton, anti_He3, anti_alpha inelastic:
68 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
69 - final-state: FTFP for all energies
70 - anti_hyperons inelastic:
71 - cross section: Glauber-Gribov
72 - final-state: FTFP for all energies
73 - charm and bottom hadrons inelastic:
74 - cross section: Glauber-Gribov
75 - final-state: FTFP for all energies
76 - light hypernuclei inelastic:
77 - cross section: Glauber-Gribov
78 - final-state: FTFP for all energies
79 - light anti-hypernuclei inelastic:
80 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
81 - final-state: FTFP for all energies
82
83
84 G4HadronPhysicsFTFP_BERT_ATL
85 ----------------------------
86 Similar to G4HadronPhysicsFTFP_BERT, with the difference that for proton,
87 neutron, pions and kaons, the FTFP is used above 9 GeV and BERT below 12 GeV
88 (i.e. transition between these two models is in the interval [9, 12] GeV
89 for the most frequent hadrons).
90
91
92 G4HadronPhysicsFTFP_BERT_HP
93 --------------------------
94 Similar to G4HadronPhysicsFTFP_BERT, but with a different treatment of
95 low-energy neutrons:
96 - neutron inelastic: use NeutronHP (for both cross section and final state)
97 below 20 MeV; above G4NeutronCaptureXS cross section;
98 final-state: BERT between 19.9 MeV and 6 GeV,
99 FTFP above 3 GeV.
100 - neutron capture: use NeutronHP (for both cross section and final state)
101 below 20 MeV; above G4NeutronCaptureXS cross section
102 and G4NeutronRadCapture final-state.
103 - neutron fission: use NeutronHP (for both cross section and final state)
104 below 20 MeV; above Gheisha (cross section and final state).
105 Moreover, RadioactiveDecay is activated (as in all the physics lists that use HP).
106
107
108 G4HadronPhysicsFTFP_BERT_TRV
109 ----------------------------
110 The same as G4HadronPhysicsFTFP_BERT.
111
112
113 G4HadronPhysicsFTF_BIC
114 ----------------------
115 Similar to G4HadronPhysicsFTFP_BERT, with the following differences:
116 - For proton and neutron, BIC is used (instead of BERT) below 6 GeV
117 - For pions, BIC is used below 1.5 GeV, whereas BERT is used in the
118 interval 1 GeV < BERT < 6 GeV
119 - FTF is coupled with BIC (instead of directly to Precompound/de-excitation).
120
121
122 G4HadronPhysicsQGS_BIC
123 ----------------------
124 Similar to G4HadronPhysicsFTP_BIC, except that QGSP is used above 12 GeV
125 and FTFP below 25 GeV.
126
127
128 G4HadronPhysicsFTFQGSP_BERT
129 ---------------------------
130 Similar to G4HadronPhysicsFTFP_BERT, but with QGS fragmentation of strings
131 (instead of the Lund string fragmentation).
132
133
134 G4HadronPhysicsINCLXX
135 ---------------------
136 Similar to QGSP_BERT except for:
137 - proton inelastic:
138 - cross section: Barashenkov-Glauber-Gribov (G4BGGNucleonInelasticXS)
139 - final-state: QGSP > 15 GeV; 1 MeV < INCLXX < 20 GeV; Preco < 2 MeV
140 - neutron inelastic:
141 - cross section: G4NeutronInelasticXS
142 - final-state: QGSP > 15 GeV; 1 MeV < INCLXX < 20 GeV; Preco < 2 MeV
143 - charged pions inelastic:
144 - cross section: Barashenkov-Glauber-Gribov
145 - final-state: QGSP > 15 GeV; 1 MeV < INCLXX < 20 GeV; Preco < 2 MeV
146 - kaons inelastic:
147 - cross section: Glauber-Gribov
148 - final-state: QGSP > 14 GeV; BERT < 15 GeV
149 - light hypernuclei inelastic:
150 - cross section: Glauber-Gribov
151 - final-state: FTFP > 15 GeV; 1 MeV < INCLXX < 20 GeV; Preco < 2 MeV
152 - light anti-hypernuclei inelastic:
153 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
154 - final-state: FTFP for all energies
155 Note: it is possible to specify in the constructor the use of FTFP
156 instead of QGSP;
157 moreover, NeutronHP can also be activated in the constructor,
158 in which case inelastic, capture and fission below 20 MeV are
159 taken from NeutronHP (both cross section and final-state).
160
161
162 G4HadronPhysicsNuBeam
163 ---------------------
164 Similar to FTFP_BERT, except for the final-state models of proton:
165 - proton : QGSP with Lund string fragmentation > 100 GeV;
166 3 GeV < FTFP < 101 GeV; BERT < 6 GeV
167
168
169 G4HadronPhysicsQGSP_BERT
170 ------------------------
171 Hadron nuclear inelastic processes for all hadrons:
172 - proton inelastic:
173 - cross section: Barashenkov-Glauber-Gribov (G4BGGNucleonInelasticXS)
174 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
175 - neutron inelastic:
176 - cross section: G4NeutronInelasticXS
177 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
178 neutron capture:
179 - cross section: G4NeutronCaptureXS
180 - final-state: G4NeutronRadCapture
181 - charged pions inelastic:
182 - cross section: Barashenkov-Glauber-Gribov
183 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
184 - kaons inelastic:
185 - cross section: Glauber-Gribov
186 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
187 - hyperons inelastic:
188 - cross section: Glauber-Gribov
189 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
190 - anti_proton and anti_neutron inelastic:
191 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
192 - final-state: QGSP > 12 GeV; FTFP < 25 GeV
193 - anti_deuteron, anti_triton, anti_He3, and anti_alpha inelastic:
194 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
195 - final-state: FTFP for all energies
196 - anti_hyperons inelastic:
197 - cross section: Glauber-Gribov
198 - final-state: QGSP > 12 GeV; FTFP < 25 GeV
199 - charm and bottom hadrons inelastic:
200 - cross section: Glauber-Gribov
201 - final-state: QGSP > 12 GeV; FTFP < 25 GeV
202
203
204 G4HadronPhysicsQGSP_FTFP_BERT
205 -----------------------------
206 Currently it is the same as QGSP_BERT (this was not the case before G4 10.6).
207 It might be removed in future versions of Geant4.
208
209
210 G4HadronPhysicsQGSP_BERT_HP
211 ---------------------------
212 Similar to G4HadronPhysicsQGSP_BERT, but with a different treatment of
213 low-energy neutrons:
214 - neutron inelastic: for cross section, use G4NeutronHPInelasticXS
215 below 20 MeV, and G4NeutronInelasticXS above;
216 for final-state model, use G4NeutronHPInelasticVI
217 below 20 MeV, BERT between 19.9 MeV and 6 GeV,
218 FTFP between 3 and 25 GeV, QGSP above 12 GeV.
219 - neutron capture: use G4NeutronHPCaptureXS cross section and
220 G4NeutronRadCaptureHP final-state model
221 (Note: if NuDEX is enabled (by default it is not),
222 then G4NuDEXNeutronCaptureModel final-state
223 model is used instead of G4NeutronRadCaptureHP).
224 - neutron fission: use G4NeutronHPFissionXS cross section and
225 G4NeutronFissionVI final-state model.
226 Moreover, RadioactiveDecay is activated (as in all the physics lists that use HP)
227 Important warning: since G4 11.2, this constructor is different than all
228 other HP-based constructors for the treatment of neutrons
229 below 20 MeV : new "experimental" cross sections and
230 final-state models - which are different from the HP ones -
231 are utilised for testing, and therefore we recommend to
232 not using them for physics studies.
233
234 G4HadronPhysicsQGSP_BIC
235 -----------------------
236 Hadron nuclear inelastic processes for all hadrons:
237 - proton inelastic:
238 - cross section: Barashenkov-Glauber-Gribov (G4BGGNucleonInelasticXS)
239 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BIC < 6 GeV
240 - neutron inelastic:
241 - cross section: G4NeutronInelasticXS
242 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BIC < 6 GeV
243 neutron capture:
244 - cross section: G4NeutronCaptureXS
245 - final-state: G4NeutronRadCapture
246 - charged pions inelastic:
247 - cross section: Barashenkov-Glauber-Gribov
248 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
249 - kaons inelastic:
250 - cross section: Glauber-Gribov
251 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
252 - hyperons inelastic:
253 - cross section: Glauber-Gribov
254 - final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; BERT < 6 GeV
255 - anti_proton and anti_neutron inelastic:
256 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
257 - final-state: QGSP > 12 GeV; FTFP < 25 GeV
258 - anti_deuteron, anti_triton, anti_He3, and anti_alpha inelastic:
259 - cross-section: Galoyan-Uzhinsky-Glauber-Gribov
260 - final-state: FTFP for all energies
261 - anti_hyperons inelastic:
262 - cross section: Glauber-Gribov
263 - final-state: QGSP > 12 GeV; FTFP < 25 GeV
264
265
266 G4HadronPhysicsQGSP_BIC_HP
267 --------------------------
268 Similar to G4HadronPhysicsQGSP_BIC, but with a different treatment of
269 low-energy neutrons:
270 - neutron inelastic: use NeutronHP (for both cross section and final state)
271 below 20 MeV; above G4NeutronCaptureXS cross section;
272 final-state: BIC between 19.9 MeV and 6 GeV,
273 FTFP between 3 and 25 GeV, QGSP above 12 GeV.
274 - neutron capture: use NeutronHP (for both cross section and final state)
275 below 20 MeV; above G4NeutronCaptureXS cross section
276 and G4NeutronRadCapture final-state.
277 - neutron fission: use NeutronHP (for both cross section and final state)
278 below 20 MeV; above Gheisha (cross section and final state).
279 Moreover, RadioactiveDecay is activated (as in all the physics lists that use HP).
280
281
282 G4HadronPhysicsQGSP_BIC_AllHP
283 -----------------------------
284 Similar to G4HadronPhysicsQGSP_BIC_HP, but with a different treatment of
285 low-energy protons:
286 ParticleHP is used (for both cross section and final state) below 200 MeV;
287 above it: Barashenkov-Glauber-Gribov inelastic cross section;
288 final-state: QGSP > 12 GeV; 3 GeV < FTFP < 25 GeV; 190 MeV < BIC < 6 GeV.
289
290
291 G4HadronPhysicsShielding
292 ------------------------
293 Similar to G4HadronPhysicsFTFP_BERT_HP except for using
294 JENDLHEInelasticCrossSection for the neutron inelastic cross section
295 above 20 MeV.
296 Note: the variant "M" of the Shielding physics list has a transition region
297 between FTFP and BERT for pions between 9.5 and 9.9 GeV
298 (instead of 3-6 GeV).
299
300
301 G4HadronPhysicsShieldingLEND
302 ----------------------------
303 Similar to G4HadronPhysicsShielding, except that LEND is used for neutrons
304 below 20 MeV instead of NeutronHP.
305
306
307 G4VHadronPhysics
308 ----------------
309 Utility class which provides useful methods.
310
311
312 G4URRNeutrons
313 -------------
314 Physics list constructor that can be applied on top of any _HP or _HPT based
315 physics list, to enable the special Unresolved Resonance Region (URR) treatment
316 of low-energy neutrons based on Particle Table (PT).
317 Notes:
318 - If this constructor is applied on top of a non-HP based physics list,
319 then nothing changes and a warning is printed out.
320 - If this constructor is applied on top of a HP-based physics list,
321 and the thermal scattering is applied after G4URRNeutrons, then
322 there will be a problem of full overlappings between models.
323 Therefore, if you need thermal scattering, activate it (e.g. by
324 using a HPT-based physics list) before applying G4URRNeutrons.