Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 26 //--------------------------------------------------------------------------- 27 // ClassName: G4UCNMicroRoughnessHelper 28 // 29 // Class description: 30 // 31 // This file contains the headers of various functions all related to the 32 // calculation of microroughness. 33 // see A. Steyerl, Z. Physik 254 (1972) 169. 34 // 35 // Angular cut: for angles which are closer to the specular direction than a 36 // certain value (0.01°), the probability is set to 0 in order to avoid a 37 // hang-up at the generation of the polar angle due to a very sharp angular 38 // distribution 39 // 40 // 12-05-14, adopted from Stefan Heule (PSI) Thesis by P.Gumplinger 41 // reported in F. Atchison et al., Eur. Phys. J. A 44, 23–29 (2010) 42 // DOI: 10.1140/epja/i2010-10926-x 43 // Thanks to Geza Zsigmond 44 // 45 // 02-11-19 Stefan Heule's thesis is available from PSI UCN group pages at 46 // https://www.psi.ch/en/ltp-ucn-physics/papers-and-theses 47 // or directly at https://opac.nebis.ch/ediss/20080426_002127549.pdf 48 49 #ifndef G4MICROROUGHNESSHELPER_HH 50 #define G4MICROROUGHNESSHELPER_HH 1 51 52 #include "G4Types.hh" 53 54 class G4UCNMicroRoughnessHelper 55 { 56 public: // with description 57 static G4UCNMicroRoughnessHelper* GetInstance(); 58 59 public: // with description 60 // Transmitted intensity with k-vector in vacuum 61 // arguments: 62 // 1) cos(theta)^2, 63 // 2) (k_l/k)^2 64 G4double S2(G4double, G4double) const; 65 66 // Transmitted intensity with k-vector within the medium 67 // arguments: 68 // 1) cos(theta')^2, 69 // 2) (k_l/k')^2 70 G4double SS2(G4double, G4double) const; 71 72 // Fourier-tranform of the autocorrelation function with k-vector in vacuum 73 // arguments: 74 // 1) k^2, 75 // 2) theta_i, 76 // 3) theta_o, 77 // 4) phi_o, 78 // 5) b^2, 79 // 6) w^2, 80 // 7) angular cut 81 G4double Fmu(G4double, G4double, G4double, G4double, G4double, G4double, G4double) const; 82 83 // Fourier-tranform of the autocorrelation function with k-vector within 84 // the medium 85 // arguments: 86 // 1) k, 87 // 2) k', 88 // 3) theta_i, 89 // 4) theta'_o, 90 // 5) phi'_o, 91 // 6) b^2, 92 // 7) w^2, 93 // 8) angular cut 94 // 9) theta_refract 95 G4double FmuS( 96 G4double, G4double, G4double, G4double, G4double, G4double, G4double, G4double, G4double) const; 97 98 // Integral probability for non-specular reflection 99 // arguments: 100 // 1) E, 101 // 2) V_F, 102 // 3) theta_i, 103 // 4) number of angles theta_o for which the probability is calculated, 104 // 5) number of angles phi_o for which the probability is calculated, 105 // 6) b^2, 106 // 7) w^2, 107 // 8) pointer to G4double array with max values of the probability, 108 // 9) angular cut 109 G4double IntIplus( 110 G4double, G4double, G4double, G4int, G4int, G4double, G4double, G4double*, G4double) const; 111 112 // Probability of non-specular reflection with the microroughness model 113 // arguments: 114 // 1) E, 115 // 2) V_F, 116 // 3) theta_i, 117 // 4) theta_o, 118 // 5) phi_o, 119 // 6) b, 120 // 7) w, 121 // 8) angular cut 122 G4double ProbIplus( 123 G4double, G4double, G4double, G4double, G4double, G4double, G4double, G4double) const; 124 125 // Integral probability for non-specular transmission 126 // arguments: 127 // 1) E, 128 // 2) V_F, 129 // 3) theta_i, 130 // 4) number of angles theta_o for which the probability is calculated, 131 // 5) number of angles phi_o for which the probability is calculated, 132 // 6) b^2, 133 // 7) w^2, 134 // 8) pointer to G4double array with max values of the probability, 135 // 9) angular cut 136 G4double IntIminus( 137 G4double, G4double, G4double, G4int, G4int, G4double, G4double, G4double*, G4double) const; 138 139 // Probability of non-specular transmission with the microroughness model 140 // arguments: 141 // 1) E, 142 // 2) V_F, 143 // 3) theta_i, 144 // 4) theta'_o, 145 // 5) phi'_o, 146 // 6) b, 147 // 7) w, 148 // 8) angular cut 149 G4double ProbIminus( 150 G4double, G4double, G4double, G4double, G4double, G4double, G4double, G4double) const; 151 152 protected: 153 G4UCNMicroRoughnessHelper() = default; 154 ~G4UCNMicroRoughnessHelper(); 155 156 private: 157 static G4UCNMicroRoughnessHelper* fpInstance; 158 }; 159 160 #endif // G4MICROROUGHNESSHELPER_HH 161