Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4 Polyhedron library 27 // 28 // History: 29 // 23.07.96 E.Chernyaev <Evgueni.Tcherniaev@cern.ch> - initial version 30 // 31 // 30.09.96 E.Chernyaev 32 // - added GetNextVertexIndex, GetVertex by Yasuhide Sawada 33 // - added GetNextUnitNormal, GetNextEdgeIndices, GetNextEdge 34 // 35 // 15.12.96 E.Chernyaev 36 // - added GetNumberOfRotationSteps, RotateEdge, RotateAroundZ, SetReferences 37 // - rewritten G4PolyhedronCons; 38 // - added G4PolyhedronPara, ...Trap, ...Pgon, ...Pcon, ...Sphere, ...Torus 39 // 40 // 01.06.97 E.Chernyaev 41 // - modified RotateAroundZ, added SetSideFacets 42 // 43 // 19.03.00 E.Chernyaev 44 // - implemented boolean operations (add, subtract, intersect) on polyhedra; 45 // 46 // 25.05.01 E.Chernyaev 47 // - added GetSurfaceArea() and GetVolume() 48 // 49 // 05.11.02 E.Chernyaev 50 // - added createTwistedTrap() and createPolyhedron() 51 // 52 // 20.06.05 G.Cosmo 53 // - added HepPolyhedronEllipsoid 54 // 55 // 18.07.07 T.Nikitina 56 // - added HepPolyhedronParaboloid 57 // 58 // 22.02.20 E.Chernyaev 59 // - added HepPolyhedronTet, HepPolyhedronHyberbolicMirror 60 // 61 // 12.05.21 E.Chernyaev 62 // - added TriangulatePolygon(), RotateContourAroundZ() 63 // - added HepPolyhedronPgon, HepPolyhedronPcon given by rz-contour 64 // 65 // 26.03.22 E.Chernyaev 66 // - added SetVertex(), SetFacet() 67 // - added HepPolyhedronTetMesh 68 // 69 // 04.04.22 E.Chernyaev 70 // - added JoinCoplanarFacets() 71 // 72 // 07.04.22 E.Chernyaev 73 // - added HepPolyhedronBoxMesh 74 75 #include "HepPolyhedron.h" 76 #include "G4PhysicalConstants.hh" 77 #include "G4Vector3D.hh" 78 79 #include <cstdlib> // Required on some compilers for std::abs(int) ... 80 #include <cmath> 81 #include <algorithm> 82 83 using CLHEP::perMillion; 84 using CLHEP::deg; 85 using CLHEP::pi; 86 using CLHEP::twopi; 87 using CLHEP::nm; 88 const G4double spatialTolerance = 0.01*nm; 89 90 /*********************************************************************** 91 * * 92 * Name: HepPolyhedron operator << Date: 09.05.96 * 93 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 94 * * 95 * Function: Print contents of G4 polyhedron * 96 * * 97 ***********************************************************************/ 98 std::ostream & operator<<(std::ostream & ostr, const G4Facet & facet) { 99 for (const auto& edge : facet.edge) { 100 ostr << " " << edge.v << "/" << edge.f; 101 } 102 return ostr; 103 } 104 105 std::ostream & operator<<(std::ostream & ostr, const HepPolyhedron & ph) { 106 ostr << std::endl; 107 ostr << "Nvertices=" << ph.nvert << ", Nfacets=" << ph.nface << std::endl; 108 G4int i; 109 for (i=1; i<=ph.nvert; i++) { 110 ostr << "xyz(" << i << ")=" 111 << ph.pV[i].x() << ' ' << ph.pV[i].y() << ' ' << ph.pV[i].z() 112 << std::endl; 113 } 114 for (i=1; i<=ph.nface; i++) { 115 ostr << "face(" << i << ")=" << ph.pF[i] << std::endl; 116 } 117 return ostr; 118 } 119 120 HepPolyhedron::HepPolyhedron(G4int Nvert, G4int Nface) 121 /*********************************************************************** 122 * * 123 * Name: HepPolyhedron constructor with Date: 26.03.2022 * 124 * allocation of memory Revised: * 125 * Author: E.Tcherniaev (E.Chernyaev) * 126 * * 127 ***********************************************************************/ 128 : nvert(0), nface(0), pV(nullptr), pF(nullptr) 129 { 130 AllocateMemory(Nvert, Nface); 131 } 132 133 HepPolyhedron::HepPolyhedron(const HepPolyhedron &from) 134 /*********************************************************************** 135 * * 136 * Name: HepPolyhedron copy constructor Date: 23.07.96 * 137 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 138 * * 139 ***********************************************************************/ 140 : nvert(0), nface(0), pV(nullptr), pF(nullptr) 141 { 142 AllocateMemory(from.nvert, from.nface); 143 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 144 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 145 } 146 147 HepPolyhedron::HepPolyhedron(HepPolyhedron&& from) 148 /*********************************************************************** 149 * * 150 * Name: HepPolyhedron move constructor Date: 04.11.2019 * 151 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 152 * * 153 ***********************************************************************/ 154 : nvert(0), nface(0), pV(nullptr), pF(nullptr) 155 { 156 nvert = from.nvert; 157 nface = from.nface; 158 pV = from.pV; 159 pF = from.pF; 160 161 // Release the data from the source object 162 from.nvert = 0; 163 from.nface = 0; 164 from.pV = nullptr; 165 from.pF = nullptr; 166 } 167 168 HepPolyhedron & HepPolyhedron::operator=(const HepPolyhedron &from) 169 /*********************************************************************** 170 * * 171 * Name: HepPolyhedron operator = Date: 23.07.96 * 172 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 173 * * 174 * Function: Copy contents of one polyhedron to another * 175 * * 176 ***********************************************************************/ 177 { 178 if (this != &from) { 179 AllocateMemory(from.nvert, from.nface); 180 for (G4int i=1; i<=nvert; i++) pV[i] = from.pV[i]; 181 for (G4int k=1; k<=nface; k++) pF[k] = from.pF[k]; 182 } 183 return *this; 184 } 185 186 HepPolyhedron & HepPolyhedron::operator=(HepPolyhedron&& from) 187 /*********************************************************************** 188 * * 189 * Name: HepPolyhedron move operator = Date: 04.11.2019 * 190 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 191 * * 192 * Function: Move contents of one polyhedron to another * 193 * * 194 ***********************************************************************/ 195 { 196 if (this != &from) { 197 delete [] pV; 198 delete [] pF; 199 nvert = from.nvert; 200 nface = from.nface; 201 pV = from.pV; 202 pF = from.pF; 203 204 // Release the data from the source object 205 from.nvert = 0; 206 from.nface = 0; 207 from.pV = nullptr; 208 from.pF = nullptr; 209 } 210 return *this; 211 } 212 213 G4int 214 HepPolyhedron::FindNeighbour(G4int iFace, G4int iNode, G4int iOrder) const 215 /*********************************************************************** 216 * * 217 * Name: HepPolyhedron::FindNeighbour Date: 22.11.99 * 218 * Author: E.Chernyaev Revised: * 219 * * 220 * Function: Find neighbouring face * 221 * * 222 ***********************************************************************/ 223 { 224 G4int i; 225 for (i=0; i<4; i++) { 226 if (iNode == std::abs(pF[iFace].edge[i].v)) break; 227 } 228 if (i == 4) { 229 std::cerr 230 << "HepPolyhedron::FindNeighbour: face " << iFace 231 << " has no node " << iNode 232 << std::endl; 233 return 0; 234 } 235 if (iOrder < 0) { 236 if ( --i < 0) i = 3; 237 if (pF[iFace].edge[i].v == 0) i = 2; 238 } 239 return (pF[iFace].edge[i].v > 0) ? 0 : pF[iFace].edge[i].f; 240 } 241 242 G4Normal3D HepPolyhedron::FindNodeNormal(G4int iFace, G4int iNode) const 243 /*********************************************************************** 244 * * 245 * Name: HepPolyhedron::FindNodeNormal Date: 22.11.99 * 246 * Author: E.Chernyaev Revised: * 247 * * 248 * Function: Find normal at given node * 249 * * 250 ***********************************************************************/ 251 { 252 G4Normal3D normal = GetUnitNormal(iFace); 253 G4int k = iFace, iOrder = 1; 254 255 for(;;) { 256 k = FindNeighbour(k, iNode, iOrder); 257 if (k == iFace) break; 258 if (k > 0) { 259 normal += GetUnitNormal(k); 260 }else{ 261 if (iOrder < 0) break; 262 k = iFace; 263 iOrder = -iOrder; 264 } 265 } 266 return normal.unit(); 267 } 268 269 G4int HepPolyhedron::GetNumberOfRotationSteps() 270 /*********************************************************************** 271 * * 272 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 273 * Author: J.Allison (Manchester University) Revised: * 274 * * 275 * Function: Get number of steps for whole circle * 276 * * 277 ***********************************************************************/ 278 { 279 return fNumberOfRotationSteps; 280 } 281 282 void HepPolyhedron::SetVertex(G4int index, const G4Point3D& v) 283 /*********************************************************************** 284 * * 285 * Name: HepPolyhedron::SetVertex Date: 26.03.22 * 286 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 287 * * 288 * Function: Set vertex * 289 * * 290 ***********************************************************************/ 291 { 292 if (index < 1 || index > nvert) 293 { 294 std::cerr 295 << "HepPolyhedron::SetVertex: vertex index = " << index 296 << " is out of range\n" 297 << " N. of vertices = " << nvert << "\n" 298 << " N. of facets = " << nface << std::endl; 299 return; 300 } 301 pV[index] = v; 302 } 303 304 void 305 HepPolyhedron::SetFacet(G4int index, G4int iv1, G4int iv2, G4int iv3, G4int iv4) 306 /*********************************************************************** 307 * * 308 * Name: HepPolyhedron::SetFacet Date: 26.03.22 * 309 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 310 * * 311 * Function: Set facet * 312 * * 313 ***********************************************************************/ 314 { 315 if (index < 1 || index > nface) 316 { 317 std::cerr 318 << "HepPolyhedron::SetFacet: facet index = " << index 319 << " is out of range\n" 320 << " N. of vertices = " << nvert << "\n" 321 << " N. of facets = " << nface << std::endl; 322 return; 323 } 324 if (iv1 < 1 || iv1 > nvert || 325 iv2 < 1 || iv2 > nvert || 326 iv3 < 1 || iv3 > nvert || 327 iv4 < 0 || iv4 > nvert) 328 { 329 std::cerr 330 << "HepPolyhedron::SetFacet: incorrectly specified facet" 331 << " (" << iv1 << ", " << iv2 << ", " << iv3 << ", " << iv4 << ")\n" 332 << " N. of vertices = " << nvert << "\n" 333 << " N. of facets = " << nface << std::endl; 334 return; 335 } 336 pF[index] = G4Facet(iv1, 0, iv2, 0, iv3, 0, iv4, 0); 337 } 338 339 void HepPolyhedron::SetNumberOfRotationSteps(G4int n) 340 /*********************************************************************** 341 * * 342 * Name: HepPolyhedron::SetNumberOfRotationSteps Date: 24.06.97 * 343 * Author: J.Allison (Manchester University) Revised: * 344 * * 345 * Function: Set number of steps for whole circle * 346 * * 347 ***********************************************************************/ 348 { 349 const G4int nMin = 3; 350 if (n < nMin) { 351 std::cerr 352 << "HepPolyhedron::SetNumberOfRotationSteps: attempt to set the\n" 353 << "number of steps per circle < " << nMin << "; forced to " << nMin 354 << std::endl; 355 fNumberOfRotationSteps = nMin; 356 }else{ 357 fNumberOfRotationSteps = n; 358 } 359 } 360 361 void HepPolyhedron::ResetNumberOfRotationSteps() 362 /*********************************************************************** 363 * * 364 * Name: HepPolyhedron::GetNumberOfRotationSteps Date: 24.06.97 * 365 * Author: J.Allison (Manchester University) Revised: * 366 * * 367 * Function: Reset number of steps for whole circle to default value * 368 * * 369 ***********************************************************************/ 370 { 371 fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 372 } 373 374 void HepPolyhedron::AllocateMemory(G4int Nvert, G4int Nface) 375 /*********************************************************************** 376 * * 377 * Name: HepPolyhedron::AllocateMemory Date: 19.06.96 * 378 * Author: E.Chernyaev (IHEP/Protvino) Revised: 05.11.02 * 379 * * 380 * Function: Allocate memory for GEANT4 polyhedron * 381 * * 382 * Input: Nvert - number of nodes * 383 * Nface - number of faces * 384 * * 385 ***********************************************************************/ 386 { 387 if (nvert == Nvert && nface == Nface) return; 388 delete [] pV; 389 delete [] pF; 390 if (Nvert > 0 && Nface > 0) { 391 nvert = Nvert; 392 nface = Nface; 393 pV = new G4Point3D[nvert+1]; 394 pF = new G4Facet[nface+1]; 395 }else{ 396 nvert = 0; nface = 0; pV = nullptr; pF = nullptr; 397 } 398 } 399 400 void HepPolyhedron::CreatePrism() 401 /*********************************************************************** 402 * * 403 * Name: HepPolyhedron::CreatePrism Date: 15.07.96 * 404 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 405 * * 406 * Function: Set facets for a prism * 407 * * 408 ***********************************************************************/ 409 { 410 enum {DUMMY, BOTTOM, LEFT, BACK, RIGHT, FRONT, TOP}; 411 412 pF[1] = G4Facet(1,LEFT, 4,BACK, 3,RIGHT, 2,FRONT); 413 pF[2] = G4Facet(5,TOP, 8,BACK, 4,BOTTOM, 1,FRONT); 414 pF[3] = G4Facet(8,TOP, 7,RIGHT, 3,BOTTOM, 4,LEFT); 415 pF[4] = G4Facet(7,TOP, 6,FRONT, 2,BOTTOM, 3,BACK); 416 pF[5] = G4Facet(6,TOP, 5,LEFT, 1,BOTTOM, 2,RIGHT); 417 pF[6] = G4Facet(5,FRONT, 6,RIGHT, 7,BACK, 8,LEFT); 418 } 419 420 void HepPolyhedron::RotateEdge(G4int k1, G4int k2, G4double r1, G4double r2, 421 G4int v1, G4int v2, G4int vEdge, 422 G4bool ifWholeCircle, G4int nds, G4int &kface) 423 /*********************************************************************** 424 * * 425 * Name: HepPolyhedron::RotateEdge Date: 05.12.96 * 426 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 427 * * 428 * Function: Create set of facets by rotation of an edge around Z-axis * 429 * * 430 * Input: k1, k2 - end vertices of the edge * 431 * r1, r2 - radiuses of the end vertices * 432 * v1, v2 - visibility of edges produced by rotation of the end * 433 * vertices * 434 * vEdge - visibility of the edge * 435 * ifWholeCircle - is true in case of whole circle rotation * 436 * nds - number of discrete steps * 437 * r[] - r-coordinates * 438 * kface - current free cell in the pF array * 439 * * 440 ***********************************************************************/ 441 { 442 if (r1 == 0. && r2 == 0.) return; 443 444 G4int i; 445 G4int i1 = k1; 446 G4int i2 = k2; 447 G4int ii1 = ifWholeCircle ? i1 : i1+nds; 448 G4int ii2 = ifWholeCircle ? i2 : i2+nds; 449 G4int vv = ifWholeCircle ? vEdge : 1; 450 451 if (nds == 1) { 452 if (r1 == 0.) { 453 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0); 454 }else if (r2 == 0.) { 455 pF[kface++] = G4Facet(i1,0, i2,0, v1*(i1+1),0); 456 }else{ 457 pF[kface++] = G4Facet(i1,0, v2*i2,0, (i2+1),0, v1*(i1+1),0); 458 } 459 }else{ 460 if (r1 == 0.) { 461 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0); 462 for (i2++,i=1; i<nds-1; i2++,i++) { 463 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0); 464 } 465 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0); 466 }else if (r2 == 0.) { 467 pF[kface++] = G4Facet(vv*i1,0, vEdge*i2,0, v1*(i1+1),0); 468 for (i1++,i=1; i<nds-1; i1++,i++) { 469 pF[kface++] = G4Facet(vEdge*i1,0, vEdge*i2,0, v1*(i1+1),0); 470 } 471 pF[kface++] = G4Facet(vEdge*i1,0, vv*i2,0, v1*ii1,0); 472 }else{ 473 pF[kface++] = G4Facet(vv*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 474 for (i1++,i2++,i=1; i<nds-1; i1++,i2++,i++) { 475 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vEdge*(i2+1),0,v1*(i1+1),0); 476 } 477 pF[kface++] = G4Facet(vEdge*i1,0, v2*i2,0, vv*ii2,0, v1*ii1,0); 478 } 479 } 480 } 481 482 void HepPolyhedron::SetSideFacets(G4int ii[4], G4int vv[4], 483 G4int *kk, G4double *r, 484 G4double dphi, G4int nds, G4int &kface) 485 /*********************************************************************** 486 * * 487 * Name: HepPolyhedron::SetSideFacets Date: 20.05.97 * 488 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 489 * * 490 * Function: Set side facets for the case of incomplete rotation * 491 * * 492 * Input: ii[4] - indices of original vertices * 493 * vv[4] - visibility of edges * 494 * kk[] - indices of nodes * 495 * r[] - radiuses * 496 * dphi - delta phi * 497 * nds - number of discrete steps * 498 * kface - current free cell in the pF array * 499 * * 500 ***********************************************************************/ 501 { 502 G4int k1, k2, k3, k4; 503 504 if (std::abs(dphi-pi) < perMillion) { // half a circle 505 for (G4int i=0; i<4; i++) { 506 k1 = ii[i]; 507 k2 = ii[(i+1)%4]; 508 if (r[k1] == 0. && r[k2] == 0.) vv[i] = -1; 509 } 510 } 511 512 if (ii[1] == ii[2]) { 513 k1 = kk[ii[0]]; 514 k2 = kk[ii[2]]; 515 k3 = kk[ii[3]]; 516 pF[kface++] = G4Facet(vv[0]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 517 if (r[ii[0]] != 0.) k1 += nds; 518 if (r[ii[2]] != 0.) k2 += nds; 519 if (r[ii[3]] != 0.) k3 += nds; 520 pF[kface++] = G4Facet(vv[2]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 521 }else if (kk[ii[0]] == kk[ii[1]]) { 522 k1 = kk[ii[0]]; 523 k2 = kk[ii[2]]; 524 k3 = kk[ii[3]]; 525 pF[kface++] = G4Facet(vv[1]*k1,0, vv[2]*k2,0, vv[3]*k3,0); 526 if (r[ii[0]] != 0.) k1 += nds; 527 if (r[ii[2]] != 0.) k2 += nds; 528 if (r[ii[3]] != 0.) k3 += nds; 529 pF[kface++] = G4Facet(vv[2]*k3,0, vv[1]*k2,0, vv[3]*k1,0); 530 }else if (kk[ii[2]] == kk[ii[3]]) { 531 k1 = kk[ii[0]]; 532 k2 = kk[ii[1]]; 533 k3 = kk[ii[2]]; 534 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[3]*k3,0); 535 if (r[ii[0]] != 0.) k1 += nds; 536 if (r[ii[1]] != 0.) k2 += nds; 537 if (r[ii[2]] != 0.) k3 += nds; 538 pF[kface++] = G4Facet(vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 539 }else{ 540 k1 = kk[ii[0]]; 541 k2 = kk[ii[1]]; 542 k3 = kk[ii[2]]; 543 k4 = kk[ii[3]]; 544 pF[kface++] = G4Facet(vv[0]*k1,0, vv[1]*k2,0, vv[2]*k3,0, vv[3]*k4,0); 545 if (r[ii[0]] != 0.) k1 += nds; 546 if (r[ii[1]] != 0.) k2 += nds; 547 if (r[ii[2]] != 0.) k3 += nds; 548 if (r[ii[3]] != 0.) k4 += nds; 549 pF[kface++] = G4Facet(vv[2]*k4,0, vv[1]*k3,0, vv[0]*k2,0, vv[3]*k1,0); 550 } 551 } 552 553 void HepPolyhedron::RotateAroundZ(G4int nstep, G4double phi, G4double dphi, 554 G4int np1, G4int np2, 555 const G4double *z, G4double *r, 556 G4int nodeVis, G4int edgeVis) 557 /*********************************************************************** 558 * * 559 * Name: HepPolyhedron::RotateAroundZ Date: 27.11.96 * 560 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 561 * * 562 * Function: Create HepPolyhedron for a solid produced by rotation of * 563 * two polylines around Z-axis * 564 * * 565 * Input: nstep - number of discrete steps, if 0 then default * 566 * phi - starting phi angle * 567 * dphi - delta phi * 568 * np1 - number of points in external polyline * 569 * (must be negative in case of closed polyline) * 570 * np2 - number of points in internal polyline (may be 1) * 571 * z[] - z-coordinates (+z >>> -z for both polylines) * 572 * r[] - r-coordinates * 573 * nodeVis - how to Draw edges joing consecutive positions of * 574 * node during rotation * 575 * edgeVis - how to Draw edges * 576 * * 577 ***********************************************************************/ 578 { 579 static const G4double wholeCircle = twopi; 580 581 // S E T R O T A T I O N P A R A M E T E R S 582 583 G4bool ifWholeCircle = std::abs(dphi-wholeCircle) < perMillion; 584 G4double delPhi = ifWholeCircle ? wholeCircle : dphi; 585 G4int nSphi = nstep; 586 if (nSphi <= 0) nSphi = GetNumberOfRotationSteps()*delPhi/wholeCircle + 0.5; 587 if (nSphi == 0) nSphi = 1; 588 G4int nVphi = ifWholeCircle ? nSphi : nSphi + 1; 589 G4bool ifClosed = np1 <= 0; // true if external polyline is closed 590 591 // C O U N T V E R T I C E S 592 593 G4int absNp1 = std::abs(np1); 594 G4int absNp2 = std::abs(np2); 595 G4int i1beg = 0; 596 G4int i1end = absNp1-1; 597 G4int i2beg = absNp1; 598 G4int i2end = absNp1+absNp2-1; 599 G4int i, j, k; 600 601 for(i=i1beg; i<=i2end; i++) { 602 if (std::abs(r[i]) < spatialTolerance) r[i] = 0.; 603 } 604 605 // external polyline - check position of nodes relative to Z 606 // 607 G4int Nverts = 0; 608 for (i=i1beg; i<=i1end; i++) { 609 Nverts += (r[i] == 0.) ? 1 : nVphi; 610 } 611 612 // internal polyline 613 // 614 G4bool ifSide1 = false; // whether to create bottom faces 615 G4bool ifSide2 = false; // whether to create top faces 616 617 if (r[i2beg] != r[i1beg] || z[i2beg] != z[i1beg]) { // first node 618 Nverts += (r[i2beg] == 0.) ? 1 : nVphi; 619 ifSide1 = true; 620 } 621 622 for(i=i2beg+1; i<i2end; i++) { // intermediate nodes 623 Nverts += (r[i] == 0.) ? 1 : nVphi; 624 } 625 626 if (r[i2end] != r[i1end] || z[i2end] != z[i1end]) { // last node 627 if (absNp2 > 1) Nverts += (r[i2end] == 0.) ? 1 : nVphi; 628 ifSide2 = true; 629 } 630 631 // C O U N T F A C E S 632 633 // external lateral faces 634 // 635 G4int Nfaces = ifClosed ? absNp1*nSphi : (absNp1-1)*nSphi; 636 637 // internal lateral faces 638 // 639 if (absNp2 > 1) { 640 for(i=i2beg; i<i2end; i++) { 641 if (r[i] > 0. || r[i+1] > 0.) Nfaces += nSphi; 642 } 643 644 if (ifClosed) { 645 if (r[i2end] > 0. || r[i2beg] > 0.) Nfaces += nSphi; 646 } 647 } 648 649 // bottom and top faces 650 // 651 if (!ifClosed) { 652 if (ifSide1 && (r[i1beg] > 0. || r[i2beg] > 0.)) Nfaces += nSphi; 653 if (ifSide2 && (r[i1end] > 0. || r[i2end] > 0.)) Nfaces += nSphi; 654 } 655 656 // phi_wedge faces 657 // 658 if (!ifWholeCircle) { 659 Nfaces += ifClosed ? 2*absNp1 : 2*(absNp1-1); 660 } 661 662 // A L L O C A T E M E M O R Y 663 664 AllocateMemory(Nverts, Nfaces); 665 if (pV == nullptr || pF == nullptr) return; 666 667 // G E N E R A T E V E R T I C E S 668 669 G4int *kk; // array of start indices along polylines 670 kk = new G4int[absNp1+absNp2]; 671 672 // external polyline 673 // 674 k = 1; // free position in array of vertices pV 675 for(i=i1beg; i<=i1end; i++) { 676 kk[i] = k; 677 if (r[i] == 0.) 678 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 679 } 680 681 // first point of internal polyline 682 // 683 i = i2beg; 684 if (ifSide1) { 685 kk[i] = k; 686 if (r[i] == 0.) 687 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 688 }else{ 689 kk[i] = kk[i1beg]; 690 } 691 692 // intermediate points of internal polyline 693 // 694 for(i=i2beg+1; i<i2end; i++) { 695 kk[i] = k; 696 if (r[i] == 0.) 697 { pV[k++] = G4Point3D(0, 0, z[i]); } else { k += nVphi; } 698 } 699 700 // last point of internal polyline 701 // 702 if (absNp2 > 1) { 703 i = i2end; 704 if (ifSide2) { 705 kk[i] = k; 706 if (r[i] == 0.) pV[k] = G4Point3D(0, 0, z[i]); 707 }else{ 708 kk[i] = kk[i1end]; 709 } 710 } 711 712 // set vertices 713 // 714 G4double cosPhi, sinPhi; 715 716 for(j=0; j<nVphi; j++) { 717 cosPhi = std::cos(phi+j*delPhi/nSphi); 718 sinPhi = std::sin(phi+j*delPhi/nSphi); 719 for(i=i1beg; i<=i2end; i++) { 720 if (r[i] != 0.) 721 pV[kk[i]+j] = G4Point3D(r[i]*cosPhi,r[i]*sinPhi,z[i]); 722 } 723 } 724 725 // G E N E R A T E F A C E S 726 727 // external faces 728 // 729 G4int v1,v2; 730 731 k = 1; // free position in array of faces pF 732 v2 = ifClosed ? nodeVis : 1; 733 for(i=i1beg; i<i1end; i++) { 734 v1 = v2; 735 if (!ifClosed && i == i1end-1) { 736 v2 = 1; 737 }else{ 738 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 739 } 740 RotateEdge(kk[i], kk[i+1], r[i], r[i+1], v1, v2, 741 edgeVis, ifWholeCircle, nSphi, k); 742 } 743 if (ifClosed) { 744 RotateEdge(kk[i1end], kk[i1beg], r[i1end],r[i1beg], nodeVis, nodeVis, 745 edgeVis, ifWholeCircle, nSphi, k); 746 } 747 748 // internal faces 749 // 750 if (absNp2 > 1) { 751 v2 = ifClosed ? nodeVis : 1; 752 for(i=i2beg; i<i2end; i++) { 753 v1 = v2; 754 if (!ifClosed && i==i2end-1) { 755 v2 = 1; 756 }else{ 757 v2 = (r[i] == r[i+1] && r[i+1] == r[i+2]) ? -1 : nodeVis; 758 } 759 RotateEdge(kk[i+1], kk[i], r[i+1], r[i], v2, v1, 760 edgeVis, ifWholeCircle, nSphi, k); 761 } 762 if (ifClosed) { 763 RotateEdge(kk[i2beg], kk[i2end], r[i2beg], r[i2end], nodeVis, nodeVis, 764 edgeVis, ifWholeCircle, nSphi, k); 765 } 766 } 767 768 // bottom and top faces 769 // 770 if (!ifClosed) { 771 if (ifSide1) { 772 RotateEdge(kk[i2beg], kk[i1beg], r[i2beg], r[i1beg], 1, 1, 773 -1, ifWholeCircle, nSphi, k); 774 } 775 if (ifSide2) { 776 RotateEdge(kk[i1end], kk[i2end], r[i1end], r[i2end], 1, 1, 777 -1, ifWholeCircle, nSphi, k); 778 } 779 } 780 781 // phi_wedge faces in case of incomplete circle 782 // 783 if (!ifWholeCircle) { 784 785 G4int ii[4], vv[4]; 786 787 if (ifClosed) { 788 for (i=i1beg; i<=i1end; i++) { 789 ii[0] = i; 790 ii[3] = (i == i1end) ? i1beg : i+1; 791 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 792 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 793 vv[0] = -1; 794 vv[1] = 1; 795 vv[2] = -1; 796 vv[3] = 1; 797 SetSideFacets(ii, vv, kk, r, delPhi, nSphi, k); 798 } 799 }else{ 800 for (i=i1beg; i<i1end; i++) { 801 ii[0] = i; 802 ii[3] = i+1; 803 ii[1] = (absNp2 == 1) ? i2beg : ii[0]+absNp1; 804 ii[2] = (absNp2 == 1) ? i2beg : ii[3]+absNp1; 805 vv[0] = (i == i1beg) ? 1 : -1; 806 vv[1] = 1; 807 vv[2] = (i == i1end-1) ? 1 : -1; 808 vv[3] = 1; 809 SetSideFacets(ii, vv, kk, r, delPhi, nSphi, k); 810 } 811 } 812 } 813 814 delete [] kk; // free memory 815 816 // final check 817 // 818 if (k-1 != nface) { 819 std::cerr 820 << "HepPolyhedron::RotateAroundZ: number of generated faces (" 821 << k-1 << ") is not equal to the number of allocated faces (" 822 << nface << ")" 823 << std::endl; 824 } 825 } 826 827 void 828 HepPolyhedron::RotateContourAroundZ(G4int nstep, 829 G4double phi, 830 G4double dphi, 831 const std::vector<G4TwoVector> &rz, 832 G4int nodeVis, 833 G4int edgeVis) 834 /*********************************************************************** 835 * * 836 * Name: HepPolyhedron::RotateContourAroundZ Date: 12.05.21 * 837 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 838 * * 839 * Function: Create HepPolyhedron for a solid produced by rotation of * 840 * a closed polyline (rz-contour) around Z-axis * 841 * * 842 * Input: nstep - number of discrete steps, if 0 then default * 843 * phi - starting phi angle * 844 * dphi - delta phi * 845 * rz - rz-contour * 846 * nodeVis - how to Draw edges joing consecutive positions of * 847 * node during rotation * 848 * edgeVis - how to Draw edges * 849 * * 850 ***********************************************************************/ 851 { 852 // S E T R O T A T I O N P A R A M E T E R S 853 854 G4bool ifWholeCircle = std::abs(dphi - twopi) < perMillion; 855 G4double delPhi = (ifWholeCircle) ? twopi : dphi; 856 G4int nSphi = nstep; 857 if (nSphi <= 0) nSphi = GetNumberOfRotationSteps()*delPhi/twopi + 0.5; 858 if (nSphi == 0) nSphi = 1; 859 G4int nVphi = (ifWholeCircle) ? nSphi : nSphi + 1; 860 861 // C A L C U L A T E A R E A 862 863 G4int Nrz = (G4int)rz.size(); 864 G4double area = 0; 865 for (G4int i = 0; i < Nrz; ++i) 866 { 867 G4int k = (i == 0) ? Nrz - 1 : i - 1; 868 area += rz[k].x()*rz[i].y() - rz[i].x()*rz[k].y(); 869 } 870 871 // P R E P A R E P O L Y L I N E 872 873 auto r = new G4double[Nrz]; 874 auto z = new G4double[Nrz]; 875 for (G4int i = 0; i < Nrz; ++i) 876 { 877 r[i] = rz[i].x(); 878 z[i] = rz[i].y(); 879 if (std::abs(r[i]) < spatialTolerance) r[i] = 0.; 880 } 881 882 // C O U N T V E R T I C E S A N D F A C E S 883 884 G4int Nverts = 0; 885 for(G4int i = 0; i < Nrz; ++i) Nverts += (r[i] == 0.) ? 1 : nVphi; 886 887 G4int Nedges = Nrz; 888 for (G4int i = 0; i < Nrz; ++i) 889 { 890 G4int k = (i == 0) ? Nrz - 1 : i - 1; 891 Nedges -= static_cast<int>(r[k] == 0 && r[i] == 0); 892 } 893 894 G4int Nfaces = Nedges*nSphi; // lateral faces 895 if (!ifWholeCircle) Nfaces += 2*(Nrz - 2); // phi_wedge faces 896 897 // A L L O C A T E M E M O R Y 898 899 AllocateMemory(Nverts, Nfaces); 900 if (pV == nullptr || pF == nullptr) 901 { 902 delete [] r; 903 delete [] z; 904 return; 905 } 906 907 // S E T V E R T I C E S 908 909 auto kk = new G4int[Nrz]; // start indices along contour 910 G4int kfree = 1; // current free position in array of vertices pV 911 912 // set start indices, set vertices for nodes with r == 0 913 for(G4int i = 0; i < Nrz; ++i) 914 { 915 kk[i] = kfree; 916 if (r[i] == 0.) pV[kfree++] = G4Point3D(0, 0, z[i]); 917 if (r[i] != 0.) kfree += nVphi; 918 } 919 920 // set vertices by rotating r 921 for(G4int j = 0; j < nVphi; ++j) 922 { 923 G4double cosPhi = std::cos(phi + j*delPhi/nSphi); 924 G4double sinPhi = std::sin(phi + j*delPhi/nSphi); 925 for(G4int i = 0; i < Nrz; ++i) 926 { 927 if (r[i] != 0.) 928 pV[kk[i] + j] = G4Point3D(r[i]*cosPhi, r[i]*sinPhi, z[i]); 929 } 930 } 931 932 // S E T F A C E S 933 934 kfree = 1; // current free position in array of faces pF 935 for(G4int i = 0; i < Nrz; ++i) 936 { 937 G4int i1 = (i < Nrz - 1) ? i + 1 : 0; // inverse order if area > 0 938 G4int i2 = i; 939 if (area < 0.) std::swap(i1, i2); 940 RotateEdge(kk[i1], kk[i2], r[i1], r[i2], nodeVis, nodeVis, 941 edgeVis, ifWholeCircle, nSphi, kfree); 942 } 943 944 // S E T P H I _ W E D G E F A C E S 945 946 if (!ifWholeCircle) 947 { 948 std::vector<G4int> triangles; 949 TriangulatePolygon(rz, triangles); 950 951 G4int ii[4], vv[4]; 952 G4int ntria = G4int(triangles.size()/3); 953 for (G4int i = 0; i < ntria; ++i) 954 { 955 G4int i1 = triangles[0 + i*3]; 956 G4int i2 = triangles[1 + i*3]; 957 G4int i3 = triangles[2 + i*3]; 958 if (area < 0.) std::swap(i1, i3); 959 G4int v1 = (std::abs(i2-i1) == 1 || std::abs(i2-i1) == Nrz-1) ? 1 : -1; 960 G4int v2 = (std::abs(i3-i2) == 1 || std::abs(i3-i2) == Nrz-1) ? 1 : -1; 961 G4int v3 = (std::abs(i1-i3) == 1 || std::abs(i1-i3) == Nrz-1) ? 1 : -1; 962 ii[0] = i1; ii[1] = i2; ii[2] = i2; ii[3] = i3; 963 vv[0] = v1; vv[1] = -1; vv[2] = v2; vv[3] = v3; 964 SetSideFacets(ii, vv, kk, r, delPhi, nSphi, kfree); 965 } 966 } 967 968 // free memory 969 delete [] r; 970 delete [] z; 971 delete [] kk; 972 973 // final check 974 if (kfree - 1 != nface) 975 { 976 std::cerr 977 << "HepPolyhedron::RotateContourAroundZ: number of generated faces (" 978 << kfree-1 << ") is not equal to the number of allocated faces (" 979 << nface << ")" 980 << std::endl; 981 } 982 } 983 984 G4bool 985 HepPolyhedron::TriangulatePolygon(const std::vector<G4TwoVector> &polygon, 986 std::vector<G4int> &result) 987 /*********************************************************************** 988 * * 989 * Name: HepPolyhedron::TriangulatePolygon Date: 12.05.21 * 990 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 991 * * 992 * Function: Simple implementation of "ear clipping" algorithm for * 993 * triangulation of a simple contour/polygon, it places * 994 * the result in a std::vector as triplets of vertex indices * 995 * * 996 * If triangulation is sucsessfull then the function * 997 * returns true, otherwise false * 998 * * 999 * Remark: It's a copy of G4GeomTools::TriangulatePolygon() * 1000 * * 1001 ***********************************************************************/ 1002 { 1003 result.resize(0); 1004 G4int n = (G4int)polygon.size(); 1005 if (n < 3) return false; 1006 1007 // calculate area 1008 // 1009 G4double area = 0.; 1010 for(G4int i = 0; i < n; ++i) 1011 { 1012 G4int k = (i == 0) ? n - 1 : i - 1; 1013 area += polygon[k].x()*polygon[i].y() - polygon[i].x()*polygon[k].y(); 1014 } 1015 1016 // allocate and initialize list of Vertices 1017 // we want a counter-clockwise polygon in V 1018 // 1019 auto V = new G4int[n]; 1020 if (area > 0.) 1021 for (G4int i = 0; i < n; ++i) V[i] = i; 1022 else 1023 for (G4int i = 0; i < n; ++i) V[i] = (n - 1) - i; 1024 1025 // Triangulation: remove nv-2 Vertices, creating 1 triangle every time 1026 // 1027 G4int nv = n; 1028 G4int count = 2*nv; // error detection counter 1029 for(G4int b = nv - 1; nv > 2; ) 1030 { 1031 // ERROR: if we loop, it is probably a non-simple polygon 1032 if ((count--) <= 0) 1033 { 1034 delete [] V; 1035 if (area < 0.) std::reverse(result.begin(),result.end()); 1036 return false; 1037 } 1038 1039 // three consecutive vertices in current polygon, <a,b,c> 1040 G4int a = (b < nv) ? b : 0; // previous 1041 b = (a+1 < nv) ? a+1 : 0; // current 1042 G4int c = (b+1 < nv) ? b+1 : 0; // next 1043 1044 if (CheckSnip(polygon, a,b,c, nv,V)) 1045 { 1046 // output Triangle 1047 result.push_back(V[a]); 1048 result.push_back(V[b]); 1049 result.push_back(V[c]); 1050 1051 // remove vertex b from remaining polygon 1052 nv--; 1053 for(G4int i = b; i < nv; ++i) V[i] = V[i+1]; 1054 1055 count = 2*nv; // resest error detection counter 1056 } 1057 } 1058 delete [] V; 1059 if (area < 0.) std::reverse(result.begin(),result.end()); 1060 return true; 1061 } 1062 1063 G4bool HepPolyhedron::CheckSnip(const std::vector<G4TwoVector> &contour, 1064 G4int a, G4int b, G4int c, 1065 G4int n, const G4int* V) 1066 /*********************************************************************** 1067 * * 1068 * Name: HepPolyhedron::CheckSnip Date: 12.05.21 * 1069 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 1070 * * 1071 * Function: Check for a valid snip, * 1072 * it is a helper functionfor TriangulatePolygon() * 1073 * * 1074 ***********************************************************************/ 1075 { 1076 static const G4double kCarTolerance = 1.e-9; 1077 1078 // check orientation of Triangle 1079 G4double Ax = contour[V[a]].x(), Ay = contour[V[a]].y(); 1080 G4double Bx = contour[V[b]].x(), By = contour[V[b]].y(); 1081 G4double Cx = contour[V[c]].x(), Cy = contour[V[c]].y(); 1082 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) < kCarTolerance) return false; 1083 1084 // check that there is no point inside Triangle 1085 G4double xmin = std::min(std::min(Ax,Bx),Cx); 1086 G4double xmax = std::max(std::max(Ax,Bx),Cx); 1087 G4double ymin = std::min(std::min(Ay,By),Cy); 1088 G4double ymax = std::max(std::max(Ay,By),Cy); 1089 1090 for (G4int i=0; i<n; ++i) 1091 { 1092 if((i == a) || (i == b) || (i == c)) continue; 1093 G4double Px = contour[V[i]].x(); 1094 if (Px < xmin || Px > xmax) continue; 1095 G4double Py = contour[V[i]].y(); 1096 if (Py < ymin || Py > ymax) continue; 1097 // if (PointInTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false; 1098 if ((Bx-Ax)*(Cy-Ay) - (By-Ay)*(Cx-Ax) > 0.) 1099 { 1100 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) < 0.) continue; 1101 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) < 0.) continue; 1102 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) < 0.) continue; 1103 } 1104 else 1105 { 1106 if ((Ax-Cx)*(Py-Cy) - (Ay-Cy)*(Px-Cx) > 0.) continue; 1107 if ((Bx-Ax)*(Py-Ay) - (By-Ay)*(Px-Ax) > 0.) continue; 1108 if ((Cx-Bx)*(Py-By) - (Cy-By)*(Px-Bx) > 0.) continue; 1109 } 1110 return false; 1111 } 1112 return true; 1113 } 1114 1115 void HepPolyhedron::SetReferences() 1116 /*********************************************************************** 1117 * * 1118 * Name: HepPolyhedron::SetReferences Date: 04.12.96 * 1119 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1120 * * 1121 * Function: For each edge set reference to neighbouring facet * 1122 * * 1123 ***********************************************************************/ 1124 { 1125 if (nface <= 0) return; 1126 1127 struct edgeListMember { 1128 edgeListMember *next; 1129 G4int v2; 1130 G4int iface; 1131 G4int iedge; 1132 } *edgeList, *freeList, **headList; 1133 1134 1135 // A L L O C A T E A N D I N I T I A T E L I S T S 1136 1137 edgeList = new edgeListMember[2*nface]; 1138 headList = new edgeListMember*[nvert]; 1139 1140 G4int i; 1141 for (i=0; i<nvert; i++) { 1142 headList[i] = nullptr; 1143 } 1144 freeList = edgeList; 1145 for (i=0; i<2*nface-1; i++) { 1146 edgeList[i].next = &edgeList[i+1]; 1147 } 1148 edgeList[2*nface-1].next = nullptr; 1149 1150 // L O O P A L O N G E D G E S 1151 1152 G4int iface, iedge, nedge, i1, i2, k1, k2; 1153 edgeListMember *prev, *cur; 1154 1155 for(iface=1; iface<=nface; iface++) { 1156 nedge = (pF[iface].edge[3].v == 0) ? 3 : 4; 1157 for (iedge=0; iedge<nedge; iedge++) { 1158 i1 = iedge; 1159 i2 = (iedge < nedge-1) ? iedge+1 : 0; 1160 i1 = std::abs(pF[iface].edge[i1].v); 1161 i2 = std::abs(pF[iface].edge[i2].v); 1162 k1 = (i1 < i2) ? i1 : i2; // k1 = ::min(i1,i2); 1163 k2 = (i1 > i2) ? i1 : i2; // k2 = ::max(i1,i2); 1164 1165 // check head of the List corresponding to k1 1166 cur = headList[k1]; 1167 if (cur == nullptr) { 1168 headList[k1] = freeList; 1169 if (freeList == nullptr) { 1170 std::cerr 1171 << "Polyhedron::SetReferences: bad link " 1172 << std::endl; 1173 break; 1174 } 1175 freeList = freeList->next; 1176 cur = headList[k1]; 1177 cur->next = nullptr; 1178 cur->v2 = k2; 1179 cur->iface = iface; 1180 cur->iedge = iedge; 1181 continue; 1182 } 1183 1184 if (cur->v2 == k2) { 1185 headList[k1] = cur->next; 1186 cur->next = freeList; 1187 freeList = cur; 1188 pF[iface].edge[iedge].f = cur->iface; 1189 pF[cur->iface].edge[cur->iedge].f = iface; 1190 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1191 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1192 if (i1 != i2) { 1193 std::cerr 1194 << "Polyhedron::SetReferences: different edge visibility " 1195 << iface << "/" << iedge << "/" 1196 << pF[iface].edge[iedge].v << " and " 1197 << cur->iface << "/" << cur->iedge << "/" 1198 << pF[cur->iface].edge[cur->iedge].v 1199 << std::endl; 1200 } 1201 continue; 1202 } 1203 1204 // check List itself 1205 for (;;) { 1206 prev = cur; 1207 cur = prev->next; 1208 if (cur == nullptr) { 1209 prev->next = freeList; 1210 if (freeList == nullptr) { 1211 std::cerr 1212 << "Polyhedron::SetReferences: bad link " 1213 << std::endl; 1214 break; 1215 } 1216 freeList = freeList->next; 1217 cur = prev->next; 1218 cur->next = nullptr; 1219 cur->v2 = k2; 1220 cur->iface = iface; 1221 cur->iedge = iedge; 1222 break; 1223 } 1224 1225 if (cur->v2 == k2) { 1226 prev->next = cur->next; 1227 cur->next = freeList; 1228 freeList = cur; 1229 pF[iface].edge[iedge].f = cur->iface; 1230 pF[cur->iface].edge[cur->iedge].f = iface; 1231 i1 = (pF[iface].edge[iedge].v < 0) ? -1 : 1; 1232 i2 = (pF[cur->iface].edge[cur->iedge].v < 0) ? -1 : 1; 1233 if (i1 != i2) { 1234 std::cerr 1235 << "Polyhedron::SetReferences: different edge visibility " 1236 << iface << "/" << iedge << "/" 1237 << pF[iface].edge[iedge].v << " and " 1238 << cur->iface << "/" << cur->iedge << "/" 1239 << pF[cur->iface].edge[cur->iedge].v 1240 << std::endl; 1241 } 1242 break; 1243 } 1244 } 1245 } 1246 } 1247 1248 // C H E C K T H A T A L L L I S T S A R E E M P T Y 1249 1250 for (i=0; i<nvert; i++) { 1251 if (headList[i] != nullptr) { 1252 std::cerr 1253 << "Polyhedron::SetReferences: List " << i << " is not empty" 1254 << std::endl; 1255 } 1256 } 1257 1258 // F R E E M E M O R Y 1259 1260 delete [] edgeList; 1261 delete [] headList; 1262 } 1263 1264 void HepPolyhedron::JoinCoplanarFacets(G4double tolerance) 1265 /*********************************************************************** 1266 * * 1267 * Name: HepPolyhedron::JoinCoplanarFacets Date: 04.04.22 * 1268 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 1269 * * 1270 * Function: Join couples of triangular facets to quadrangular facets * 1271 * where it is possible * 1272 * * 1273 ***********************************************************************/ 1274 { 1275 G4int njoin = 0; 1276 for (G4int icur = 1; icur <= nface; ++icur) 1277 { 1278 // skip if already joined or quadrangle 1279 if (pF[icur].edge[0].v == 0) continue; 1280 if (pF[icur].edge[3].v != 0) continue; 1281 // skip if all references point to already checked facets 1282 if (pF[icur].edge[0].f < icur && 1283 pF[icur].edge[1].f < icur && 1284 pF[icur].edge[2].f < icur) continue; 1285 // compute plane equation 1286 G4Normal3D norm = GetUnitNormal(icur); 1287 G4double dd = norm.dot(pV[pF[icur].edge[0].v]); 1288 G4int vcur0 = std::abs(pF[icur].edge[0].v); 1289 G4int vcur1 = std::abs(pF[icur].edge[1].v); 1290 G4int vcur2 = std::abs(pF[icur].edge[2].v); 1291 // select neighbouring facet 1292 G4int kcheck = 0, icheck = 0, vcheck = 0; 1293 G4double dist = DBL_MAX; 1294 for (G4int k = 0; k < 3; ++k) 1295 { 1296 G4int itmp = pF[icur].edge[k].f; 1297 // skip if already checked, joined or quadrangle 1298 if (itmp < icur) continue; 1299 if (pF[itmp].edge[0].v == 0 || 1300 pF[itmp].edge[3].v != 0) continue; 1301 // get candidate vertex 1302 G4int vtmp = 0; 1303 for (G4int j = 0; j < 3; ++j) 1304 { 1305 vtmp = std::abs(pF[itmp].edge[j].v); 1306 if (vtmp != vcur0 && vtmp != vcur1 && vtmp != vcur2) break; 1307 } 1308 // check distance to the plane 1309 G4double dtmp = std::abs(norm.dot(pV[vtmp]) - dd); 1310 if (dtmp > tolerance || dtmp >= dist) continue; 1311 dist = dtmp; 1312 kcheck = k; 1313 icheck = itmp; 1314 vcheck = vtmp; 1315 } 1316 if (icheck == 0) continue; // no facet selected 1317 // join facets 1318 njoin++; 1319 pF[icheck].edge[0].v = 0; // mark facet as joined 1320 if (kcheck == 0) 1321 { 1322 pF[icur].edge[3].v = pF[icur].edge[2].v; 1323 pF[icur].edge[2].v = pF[icur].edge[1].v; 1324 pF[icur].edge[1].v = vcheck; 1325 } 1326 else if (kcheck == 1) 1327 { 1328 pF[icur].edge[3].v = pF[icur].edge[2].v; 1329 pF[icur].edge[2].v = vcheck; 1330 } 1331 else 1332 { 1333 pF[icur].edge[3].v = vcheck; 1334 } 1335 } 1336 if (njoin == 0) return; // no joined facets 1337 1338 // restructure facets 1339 G4int nnew = 0; 1340 for (G4int icur = 1; icur <= nface; ++icur) 1341 { 1342 if (pF[icur].edge[0].v == 0) continue; 1343 nnew++; 1344 pF[nnew].edge[0].v = pF[icur].edge[0].v; 1345 pF[nnew].edge[1].v = pF[icur].edge[1].v; 1346 pF[nnew].edge[2].v = pF[icur].edge[2].v; 1347 pF[nnew].edge[3].v = pF[icur].edge[3].v; 1348 } 1349 nface = nnew; 1350 SetReferences(); 1351 } 1352 1353 void HepPolyhedron::InvertFacets() 1354 /*********************************************************************** 1355 * * 1356 * Name: HepPolyhedron::InvertFacets Date: 01.12.99 * 1357 * Author: E.Chernyaev Revised: * 1358 * * 1359 * Function: Invert the order of the nodes in the facets * 1360 * * 1361 ***********************************************************************/ 1362 { 1363 if (nface <= 0) return; 1364 G4int i, k, nnode, v[4],f[4]; 1365 for (i=1; i<=nface; i++) { 1366 nnode = (pF[i].edge[3].v == 0) ? 3 : 4; 1367 for (k=0; k<nnode; k++) { 1368 v[k] = (k+1 == nnode) ? pF[i].edge[0].v : pF[i].edge[k+1].v; 1369 if (v[k] * pF[i].edge[k].v < 0) v[k] = -v[k]; 1370 f[k] = pF[i].edge[k].f; 1371 } 1372 for (k=0; k<nnode; k++) { 1373 pF[i].edge[nnode-1-k].v = v[k]; 1374 pF[i].edge[nnode-1-k].f = f[k]; 1375 } 1376 } 1377 } 1378 1379 HepPolyhedron & HepPolyhedron::Transform(const G4Transform3D &t) 1380 /*********************************************************************** 1381 * * 1382 * Name: HepPolyhedron::Transform Date: 01.12.99 * 1383 * Author: E.Chernyaev Revised: * 1384 * * 1385 * Function: Make transformation of the polyhedron * 1386 * * 1387 ***********************************************************************/ 1388 { 1389 if (nvert > 0) { 1390 for (G4int i=1; i<=nvert; i++) { pV[i] = t * pV[i]; } 1391 1392 // C H E C K D E T E R M I N A N T A N D 1393 // I N V E R T F A C E T S I F I T I S N E G A T I V E 1394 1395 G4Vector3D d = t * G4Vector3D(0,0,0); 1396 G4Vector3D x = t * G4Vector3D(1,0,0) - d; 1397 G4Vector3D y = t * G4Vector3D(0,1,0) - d; 1398 G4Vector3D z = t * G4Vector3D(0,0,1) - d; 1399 if ((x.cross(y))*z < 0) InvertFacets(); 1400 } 1401 return *this; 1402 } 1403 1404 G4bool HepPolyhedron::GetNextVertexIndex(G4int &index, G4int &edgeFlag) const 1405 /*********************************************************************** 1406 * * 1407 * Name: HepPolyhedron::GetNextVertexIndex Date: 03.09.96 * 1408 * Author: Yasuhide Sawada Revised: * 1409 * * 1410 * Function: * 1411 * * 1412 ***********************************************************************/ 1413 { 1414 static G4ThreadLocal G4int iFace = 1; 1415 static G4ThreadLocal G4int iQVertex = 0; 1416 G4int vIndex = pF[iFace].edge[iQVertex].v; 1417 1418 edgeFlag = (vIndex > 0) ? 1 : 0; 1419 index = std::abs(vIndex); 1420 1421 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1422 iQVertex = 0; 1423 if (++iFace > nface) iFace = 1; 1424 return false; // Last Edge 1425 } 1426 1427 ++iQVertex; 1428 return true; // not Last Edge 1429 } 1430 1431 G4Point3D HepPolyhedron::GetVertex(G4int index) const 1432 /*********************************************************************** 1433 * * 1434 * Name: HepPolyhedron::GetVertex Date: 03.09.96 * 1435 * Author: Yasuhide Sawada Revised: 17.11.99 * 1436 * * 1437 * Function: Get vertex of the index. * 1438 * * 1439 ***********************************************************************/ 1440 { 1441 if (index <= 0 || index > nvert) { 1442 std::cerr 1443 << "HepPolyhedron::GetVertex: irrelevant index " << index 1444 << std::endl; 1445 return G4Point3D(); 1446 } 1447 return pV[index]; 1448 } 1449 1450 G4bool 1451 HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag) const 1452 /*********************************************************************** 1453 * * 1454 * Name: HepPolyhedron::GetNextVertex Date: 22.07.96 * 1455 * Author: John Allison Revised: * 1456 * * 1457 * Function: Get vertices of the quadrilaterals in order for each * 1458 * face in face order. Returns false when finished each * 1459 * face. * 1460 * * 1461 ***********************************************************************/ 1462 { 1463 G4int index; 1464 G4bool rep = GetNextVertexIndex(index, edgeFlag); 1465 vertex = pV[index]; 1466 return rep; 1467 } 1468 1469 G4bool HepPolyhedron::GetNextVertex(G4Point3D &vertex, G4int &edgeFlag, 1470 G4Normal3D &normal) const 1471 /*********************************************************************** 1472 * * 1473 * Name: HepPolyhedron::GetNextVertex Date: 26.11.99 * 1474 * Author: E.Chernyaev Revised: * 1475 * * 1476 * Function: Get vertices with normals of the quadrilaterals in order * 1477 * for each face in face order. * 1478 * Returns false when finished each face. * 1479 * * 1480 ***********************************************************************/ 1481 { 1482 static G4ThreadLocal G4int iFace = 1; 1483 static G4ThreadLocal G4int iNode = 0; 1484 1485 if (nface == 0) return false; // empty polyhedron 1486 1487 G4int k = pF[iFace].edge[iNode].v; 1488 if (k > 0) { edgeFlag = 1; } else { edgeFlag = -1; k = -k; } 1489 vertex = pV[k]; 1490 normal = FindNodeNormal(iFace,k); 1491 if (iNode >= 3 || pF[iFace].edge[iNode+1].v == 0) { 1492 iNode = 0; 1493 if (++iFace > nface) iFace = 1; 1494 return false; // last node 1495 } 1496 ++iNode; 1497 return true; // not last node 1498 } 1499 1500 G4bool HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag, 1501 G4int &iface1, G4int &iface2) const 1502 /*********************************************************************** 1503 * * 1504 * Name: HepPolyhedron::GetNextEdgeIndices Date: 30.09.96 * 1505 * Author: E.Chernyaev Revised: 17.11.99 * 1506 * * 1507 * Function: Get indices of the next edge together with indices of * 1508 * of the faces which share the edge. * 1509 * Returns false when the last edge. * 1510 * * 1511 ***********************************************************************/ 1512 { 1513 static G4ThreadLocal G4int iFace = 1; 1514 static G4ThreadLocal G4int iQVertex = 0; 1515 static G4ThreadLocal G4int iOrder = 1; 1516 G4int k1, k2, kflag, kface1, kface2; 1517 1518 if (iFace == 1 && iQVertex == 0) { 1519 k2 = pF[nface].edge[0].v; 1520 k1 = pF[nface].edge[3].v; 1521 if (k1 == 0) k1 = pF[nface].edge[2].v; 1522 if (std::abs(k1) > std::abs(k2)) iOrder = -1; 1523 } 1524 1525 do { 1526 k1 = pF[iFace].edge[iQVertex].v; 1527 kflag = k1; 1528 k1 = std::abs(k1); 1529 kface1 = iFace; 1530 kface2 = pF[iFace].edge[iQVertex].f; 1531 if (iQVertex >= 3 || pF[iFace].edge[iQVertex+1].v == 0) { 1532 iQVertex = 0; 1533 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1534 iFace++; 1535 }else{ 1536 iQVertex++; 1537 k2 = std::abs(pF[iFace].edge[iQVertex].v); 1538 } 1539 } while (iOrder*k1 > iOrder*k2); 1540 1541 i1 = k1; i2 = k2; edgeFlag = (kflag > 0) ? 1 : 0; 1542 iface1 = kface1; iface2 = kface2; 1543 1544 if (iFace > nface) { 1545 iFace = 1; iOrder = 1; 1546 return false; 1547 } 1548 1549 return true; 1550 } 1551 1552 G4bool 1553 HepPolyhedron::GetNextEdgeIndices(G4int &i1, G4int &i2, G4int &edgeFlag) const 1554 /*********************************************************************** 1555 * * 1556 * Name: HepPolyhedron::GetNextEdgeIndices Date: 17.11.99 * 1557 * Author: E.Chernyaev Revised: * 1558 * * 1559 * Function: Get indices of the next edge. * 1560 * Returns false when the last edge. * 1561 * * 1562 ***********************************************************************/ 1563 { 1564 G4int kface1, kface2; 1565 return GetNextEdgeIndices(i1, i2, edgeFlag, kface1, kface2); 1566 } 1567 1568 G4bool 1569 HepPolyhedron::GetNextEdge(G4Point3D &p1, 1570 G4Point3D &p2, 1571 G4int &edgeFlag) const 1572 /*********************************************************************** 1573 * * 1574 * Name: HepPolyhedron::GetNextEdge Date: 30.09.96 * 1575 * Author: E.Chernyaev Revised: * 1576 * * 1577 * Function: Get next edge. * 1578 * Returns false when the last edge. * 1579 * * 1580 ***********************************************************************/ 1581 { 1582 G4int i1,i2; 1583 G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag); 1584 p1 = pV[i1]; 1585 p2 = pV[i2]; 1586 return rep; 1587 } 1588 1589 G4bool 1590 HepPolyhedron::GetNextEdge(G4Point3D &p1, G4Point3D &p2, 1591 G4int &edgeFlag, G4int &iface1, G4int &iface2) const 1592 /*********************************************************************** 1593 * * 1594 * Name: HepPolyhedron::GetNextEdge Date: 17.11.99 * 1595 * Author: E.Chernyaev Revised: * 1596 * * 1597 * Function: Get next edge with indices of the faces which share * 1598 * the edge. * 1599 * Returns false when the last edge. * 1600 * * 1601 ***********************************************************************/ 1602 { 1603 G4int i1,i2; 1604 G4bool rep = GetNextEdgeIndices(i1,i2,edgeFlag,iface1,iface2); 1605 p1 = pV[i1]; 1606 p2 = pV[i2]; 1607 return rep; 1608 } 1609 1610 void HepPolyhedron::GetFacet(G4int iFace, G4int &n, G4int *iNodes, 1611 G4int *edgeFlags, G4int *iFaces) const 1612 /*********************************************************************** 1613 * * 1614 * Name: HepPolyhedron::GetFacet Date: 15.12.99 * 1615 * Author: E.Chernyaev Revised: * 1616 * * 1617 * Function: Get face by index * 1618 * * 1619 ***********************************************************************/ 1620 { 1621 if (iFace < 1 || iFace > nface) { 1622 std::cerr 1623 << "HepPolyhedron::GetFacet: irrelevant index " << iFace 1624 << std::endl; 1625 n = 0; 1626 }else{ 1627 G4int i, k; 1628 for (i=0; i<4; i++) { 1629 k = pF[iFace].edge[i].v; 1630 if (k == 0) break; 1631 if (iFaces != nullptr) iFaces[i] = pF[iFace].edge[i].f; 1632 if (k > 0) { 1633 iNodes[i] = k; 1634 if (edgeFlags != nullptr) edgeFlags[i] = 1; 1635 }else{ 1636 iNodes[i] = -k; 1637 if (edgeFlags != nullptr) edgeFlags[i] = -1; 1638 } 1639 } 1640 n = i; 1641 } 1642 } 1643 1644 void HepPolyhedron::GetFacet(G4int index, G4int &n, G4Point3D *nodes, 1645 G4int *edgeFlags, G4Normal3D *normals) const 1646 /*********************************************************************** 1647 * * 1648 * Name: HepPolyhedron::GetFacet Date: 17.11.99 * 1649 * Author: E.Chernyaev Revised: * 1650 * * 1651 * Function: Get face by index * 1652 * * 1653 ***********************************************************************/ 1654 { 1655 G4int iNodes[4]; 1656 GetFacet(index, n, iNodes, edgeFlags); 1657 if (n != 0) { 1658 for (G4int i=0; i<n; i++) { 1659 nodes[i] = pV[iNodes[i]]; 1660 if (normals != nullptr) normals[i] = FindNodeNormal(index,iNodes[i]); 1661 } 1662 } 1663 } 1664 1665 G4bool 1666 HepPolyhedron::GetNextFacet(G4int &n, G4Point3D *nodes, 1667 G4int *edgeFlags, G4Normal3D *normals) const 1668 /*********************************************************************** 1669 * * 1670 * Name: HepPolyhedron::GetNextFacet Date: 19.11.99 * 1671 * Author: E.Chernyaev Revised: * 1672 * * 1673 * Function: Get next face with normals of unit length at the nodes. * 1674 * Returns false when finished all faces. * 1675 * * 1676 ***********************************************************************/ 1677 { 1678 static G4ThreadLocal G4int iFace = 1; 1679 1680 if (edgeFlags == nullptr) { 1681 GetFacet(iFace, n, nodes); 1682 }else if (normals == nullptr) { 1683 GetFacet(iFace, n, nodes, edgeFlags); 1684 }else{ 1685 GetFacet(iFace, n, nodes, edgeFlags, normals); 1686 } 1687 1688 if (++iFace > nface) { 1689 iFace = 1; 1690 return false; 1691 } 1692 1693 return true; 1694 } 1695 1696 G4Normal3D HepPolyhedron::GetNormal(G4int iFace) const 1697 /*********************************************************************** 1698 * * 1699 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1700 * Author: E.Chernyaev Revised: * 1701 * * 1702 * Function: Get normal of the face given by index * 1703 * * 1704 ***********************************************************************/ 1705 { 1706 if (iFace < 1 || iFace > nface) { 1707 std::cerr 1708 << "HepPolyhedron::GetNormal: irrelevant index " << iFace 1709 << std::endl; 1710 return G4Normal3D(); 1711 } 1712 1713 G4int i0 = std::abs(pF[iFace].edge[0].v); 1714 G4int i1 = std::abs(pF[iFace].edge[1].v); 1715 G4int i2 = std::abs(pF[iFace].edge[2].v); 1716 G4int i3 = std::abs(pF[iFace].edge[3].v); 1717 if (i3 == 0) i3 = i0; 1718 return (pV[i2] - pV[i0]).cross(pV[i3] - pV[i1]); 1719 } 1720 1721 G4Normal3D HepPolyhedron::GetUnitNormal(G4int iFace) const 1722 /*********************************************************************** 1723 * * 1724 * Name: HepPolyhedron::GetNormal Date: 19.11.99 * 1725 * Author: E.Chernyaev Revised: * 1726 * * 1727 * Function: Get unit normal of the face given by index * 1728 * * 1729 ***********************************************************************/ 1730 { 1731 if (iFace < 1 || iFace > nface) { 1732 std::cerr 1733 << "HepPolyhedron::GetUnitNormal: irrelevant index " << iFace 1734 << std::endl; 1735 return G4Normal3D(); 1736 } 1737 1738 G4int i0 = std::abs(pF[iFace].edge[0].v); 1739 G4int i1 = std::abs(pF[iFace].edge[1].v); 1740 G4int i2 = std::abs(pF[iFace].edge[2].v); 1741 G4int i3 = std::abs(pF[iFace].edge[3].v); 1742 if (i3 == 0) i3 = i0; 1743 return ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).unit(); 1744 } 1745 1746 G4bool HepPolyhedron::GetNextNormal(G4Normal3D &normal) const 1747 /*********************************************************************** 1748 * * 1749 * Name: HepPolyhedron::GetNextNormal Date: 22.07.96 * 1750 * Author: John Allison Revised: 19.11.99 * 1751 * * 1752 * Function: Get normals of each face in face order. Returns false * 1753 * when finished all faces. * 1754 * * 1755 ***********************************************************************/ 1756 { 1757 static G4ThreadLocal G4int iFace = 1; 1758 normal = GetNormal(iFace); 1759 if (++iFace > nface) { 1760 iFace = 1; 1761 return false; 1762 } 1763 return true; 1764 } 1765 1766 G4bool HepPolyhedron::GetNextUnitNormal(G4Normal3D &normal) const 1767 /*********************************************************************** 1768 * * 1769 * Name: HepPolyhedron::GetNextUnitNormal Date: 16.09.96 * 1770 * Author: E.Chernyaev Revised: * 1771 * * 1772 * Function: Get normals of unit length of each face in face order. * 1773 * Returns false when finished all faces. * 1774 * * 1775 ***********************************************************************/ 1776 { 1777 G4bool rep = GetNextNormal(normal); 1778 normal = normal.unit(); 1779 return rep; 1780 } 1781 1782 G4double HepPolyhedron::GetSurfaceArea() const 1783 /*********************************************************************** 1784 * * 1785 * Name: HepPolyhedron::GetSurfaceArea Date: 25.05.01 * 1786 * Author: E.Chernyaev Revised: * 1787 * * 1788 * Function: Returns area of the surface of the polyhedron. * 1789 * * 1790 ***********************************************************************/ 1791 { 1792 G4double srf = 0.; 1793 for (G4int iFace=1; iFace<=nface; iFace++) { 1794 G4int i0 = std::abs(pF[iFace].edge[0].v); 1795 G4int i1 = std::abs(pF[iFace].edge[1].v); 1796 G4int i2 = std::abs(pF[iFace].edge[2].v); 1797 G4int i3 = std::abs(pF[iFace].edge[3].v); 1798 if (i3 == 0) i3 = i0; 1799 srf += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).mag(); 1800 } 1801 return srf/2.; 1802 } 1803 1804 G4double HepPolyhedron::GetVolume() const 1805 /*********************************************************************** 1806 * * 1807 * Name: HepPolyhedron::GetVolume Date: 25.05.01 * 1808 * Author: E.Chernyaev Revised: * 1809 * * 1810 * Function: Returns volume of the polyhedron. * 1811 * * 1812 ***********************************************************************/ 1813 { 1814 G4double v = 0.; 1815 for (G4int iFace=1; iFace<=nface; iFace++) { 1816 G4int i0 = std::abs(pF[iFace].edge[0].v); 1817 G4int i1 = std::abs(pF[iFace].edge[1].v); 1818 G4int i2 = std::abs(pF[iFace].edge[2].v); 1819 G4int i3 = std::abs(pF[iFace].edge[3].v); 1820 G4Point3D pt; 1821 if (i3 == 0) { 1822 i3 = i0; 1823 pt = (pV[i0]+pV[i1]+pV[i2]) * (1./3.); 1824 }else{ 1825 pt = (pV[i0]+pV[i1]+pV[i2]+pV[i3]) * 0.25; 1826 } 1827 v += ((pV[i2] - pV[i0]).cross(pV[i3] - pV[i1])).dot(pt); 1828 } 1829 return v/6.; 1830 } 1831 1832 G4int 1833 HepPolyhedron::createTwistedTrap(G4double Dz, 1834 const G4double xy1[][2], 1835 const G4double xy2[][2]) 1836 /*********************************************************************** 1837 * * 1838 * Name: createTwistedTrap Date: 05.11.02 * 1839 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1840 * * 1841 * Function: Creates polyhedron for twisted trapezoid * 1842 * * 1843 * Input: Dz - half-length along Z 8----7 * 1844 * xy1[2,4] - quadrilateral at Z=-Dz 5----6 ! * 1845 * xy2[2,4] - quadrilateral at Z=+Dz ! 4-!--3 * 1846 * 1----2 * 1847 * * 1848 ***********************************************************************/ 1849 { 1850 AllocateMemory(12,18); 1851 1852 pV[ 1] = G4Point3D(xy1[0][0],xy1[0][1],-Dz); 1853 pV[ 2] = G4Point3D(xy1[1][0],xy1[1][1],-Dz); 1854 pV[ 3] = G4Point3D(xy1[2][0],xy1[2][1],-Dz); 1855 pV[ 4] = G4Point3D(xy1[3][0],xy1[3][1],-Dz); 1856 1857 pV[ 5] = G4Point3D(xy2[0][0],xy2[0][1], Dz); 1858 pV[ 6] = G4Point3D(xy2[1][0],xy2[1][1], Dz); 1859 pV[ 7] = G4Point3D(xy2[2][0],xy2[2][1], Dz); 1860 pV[ 8] = G4Point3D(xy2[3][0],xy2[3][1], Dz); 1861 1862 pV[ 9] = (pV[1]+pV[2]+pV[5]+pV[6])/4.; 1863 pV[10] = (pV[2]+pV[3]+pV[6]+pV[7])/4.; 1864 pV[11] = (pV[3]+pV[4]+pV[7]+pV[8])/4.; 1865 pV[12] = (pV[4]+pV[1]+pV[8]+pV[5])/4.; 1866 1867 enum {DUMMY, BOTTOM, 1868 LEFT_BOTTOM, LEFT_FRONT, LEFT_TOP, LEFT_BACK, 1869 BACK_BOTTOM, BACK_LEFT, BACK_TOP, BACK_RIGHT, 1870 RIGHT_BOTTOM, RIGHT_BACK, RIGHT_TOP, RIGHT_FRONT, 1871 FRONT_BOTTOM, FRONT_RIGHT, FRONT_TOP, FRONT_LEFT, 1872 TOP}; 1873 1874 pF[ 1]=G4Facet(1,LEFT_BOTTOM, 4,BACK_BOTTOM, 3,RIGHT_BOTTOM, 2,FRONT_BOTTOM); 1875 1876 pF[ 2]=G4Facet(4,BOTTOM, -1,LEFT_FRONT, -12,LEFT_BACK, 0,0); 1877 pF[ 3]=G4Facet(1,FRONT_LEFT, -5,LEFT_TOP, -12,LEFT_BOTTOM, 0,0); 1878 pF[ 4]=G4Facet(5,TOP, -8,LEFT_BACK, -12,LEFT_FRONT, 0,0); 1879 pF[ 5]=G4Facet(8,BACK_LEFT, -4,LEFT_BOTTOM, -12,LEFT_TOP, 0,0); 1880 1881 pF[ 6]=G4Facet(3,BOTTOM, -4,BACK_LEFT, -11,BACK_RIGHT, 0,0); 1882 pF[ 7]=G4Facet(4,LEFT_BACK, -8,BACK_TOP, -11,BACK_BOTTOM, 0,0); 1883 pF[ 8]=G4Facet(8,TOP, -7,BACK_RIGHT, -11,BACK_LEFT, 0,0); 1884 pF[ 9]=G4Facet(7,RIGHT_BACK, -3,BACK_BOTTOM, -11,BACK_TOP, 0,0); 1885 1886 pF[10]=G4Facet(2,BOTTOM, -3,RIGHT_BACK, -10,RIGHT_FRONT, 0,0); 1887 pF[11]=G4Facet(3,BACK_RIGHT, -7,RIGHT_TOP, -10,RIGHT_BOTTOM, 0,0); 1888 pF[12]=G4Facet(7,TOP, -6,RIGHT_FRONT, -10,RIGHT_BACK, 0,0); 1889 pF[13]=G4Facet(6,FRONT_RIGHT,-2,RIGHT_BOTTOM,-10,RIGHT_TOP, 0,0); 1890 1891 pF[14]=G4Facet(1,BOTTOM, -2,FRONT_RIGHT, -9,FRONT_LEFT, 0,0); 1892 pF[15]=G4Facet(2,RIGHT_FRONT,-6,FRONT_TOP, -9,FRONT_BOTTOM, 0,0); 1893 pF[16]=G4Facet(6,TOP, -5,FRONT_LEFT, -9,FRONT_RIGHT, 0,0); 1894 pF[17]=G4Facet(5,LEFT_FRONT, -1,FRONT_BOTTOM, -9,FRONT_TOP, 0,0); 1895 1896 pF[18]=G4Facet(5,FRONT_TOP, 6,RIGHT_TOP, 7,BACK_TOP, 8,LEFT_TOP); 1897 1898 return 0; 1899 } 1900 1901 G4int 1902 HepPolyhedron::createPolyhedron(G4int Nnodes, G4int Nfaces, 1903 const G4double xyz[][3], 1904 const G4int faces[][4]) 1905 /*********************************************************************** 1906 * * 1907 * Name: createPolyhedron Date: 05.11.02 * 1908 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1909 * * 1910 * Function: Creates user defined polyhedron * 1911 * * 1912 * Input: Nnodes - number of nodes * 1913 * Nfaces - number of faces * 1914 * nodes[][3] - node coordinates * 1915 * faces[][4] - faces * 1916 * * 1917 ***********************************************************************/ 1918 { 1919 AllocateMemory(Nnodes, Nfaces); 1920 if (nvert == 0) return 1; 1921 1922 for (G4int i=0; i<Nnodes; i++) { 1923 pV[i+1] = G4Point3D(xyz[i][0], xyz[i][1], xyz[i][2]); 1924 } 1925 for (G4int k=0; k<Nfaces; k++) { 1926 pF[k+1] = G4Facet(faces[k][0],0,faces[k][1],0,faces[k][2],0,faces[k][3],0); 1927 } 1928 SetReferences(); 1929 return 0; 1930 } 1931 1932 G4Point3D HepPolyhedron::vertexUnweightedMean() const { 1933 /*********************************************************************** 1934 * * 1935 * Name: vertexUnweightedMean Date: 23.10.23 * 1936 * Author: S. Boogert (Manchester) Revised: * 1937 * * 1938 * Function: Calculate the unweighted mean of all the vertices * 1939 * in the polyhedron. Not to be confused with the polyhedron centre or * 1940 * centre of mass * 1941 ***********************************************************************/ 1942 1943 auto centre = G4Point3D(); 1944 for(int i=1;i<=nvert;i++) { 1945 centre += pV[i]; 1946 } 1947 centre = centre/nvert; 1948 return centre; 1949 } 1950 1951 HepPolyhedronTrd2::HepPolyhedronTrd2(G4double Dx1, G4double Dx2, 1952 G4double Dy1, G4double Dy2, 1953 G4double Dz) 1954 /*********************************************************************** 1955 * * 1956 * Name: HepPolyhedronTrd2 Date: 22.07.96 * 1957 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 1958 * * 1959 * Function: Create GEANT4 TRD2-trapezoid * 1960 * * 1961 * Input: Dx1 - half-length along X at -Dz 8----7 * 1962 * Dx2 - half-length along X ay +Dz 5----6 ! * 1963 * Dy1 - half-length along Y ay -Dz ! 4-!--3 * 1964 * Dy2 - half-length along Y ay +Dz 1----2 * 1965 * Dz - half-length along Z * 1966 * * 1967 ***********************************************************************/ 1968 { 1969 AllocateMemory(8,6); 1970 1971 pV[1] = G4Point3D(-Dx1,-Dy1,-Dz); 1972 pV[2] = G4Point3D( Dx1,-Dy1,-Dz); 1973 pV[3] = G4Point3D( Dx1, Dy1,-Dz); 1974 pV[4] = G4Point3D(-Dx1, Dy1,-Dz); 1975 pV[5] = G4Point3D(-Dx2,-Dy2, Dz); 1976 pV[6] = G4Point3D( Dx2,-Dy2, Dz); 1977 pV[7] = G4Point3D( Dx2, Dy2, Dz); 1978 pV[8] = G4Point3D(-Dx2, Dy2, Dz); 1979 1980 CreatePrism(); 1981 } 1982 1983 HepPolyhedronTrd2::~HepPolyhedronTrd2() = default; 1984 1985 HepPolyhedronTrd1::HepPolyhedronTrd1(G4double Dx1, G4double Dx2, 1986 G4double Dy, G4double Dz) 1987 : HepPolyhedronTrd2(Dx1, Dx2, Dy, Dy, Dz) {} 1988 1989 HepPolyhedronTrd1::~HepPolyhedronTrd1() = default; 1990 1991 HepPolyhedronBox::HepPolyhedronBox(G4double Dx, G4double Dy, G4double Dz) 1992 : HepPolyhedronTrd2(Dx, Dx, Dy, Dy, Dz) {} 1993 1994 HepPolyhedronBox::~HepPolyhedronBox() = default; 1995 1996 HepPolyhedronTrap::HepPolyhedronTrap(G4double Dz, 1997 G4double Theta, 1998 G4double Phi, 1999 G4double Dy1, 2000 G4double Dx1, 2001 G4double Dx2, 2002 G4double Alp1, 2003 G4double Dy2, 2004 G4double Dx3, 2005 G4double Dx4, 2006 G4double Alp2) 2007 /*********************************************************************** 2008 * * 2009 * Name: HepPolyhedronTrap Date: 20.11.96 * 2010 * Author: E.Chernyaev Revised: * 2011 * * 2012 * Function: Create GEANT4 TRAP-trapezoid * 2013 * * 2014 * Input: DZ - half-length in Z * 2015 * Theta,Phi - polar angles of the line joining centres of the * 2016 * faces at Z=-Dz and Z=+Dz * 2017 * Dy1 - half-length in Y of the face at Z=-Dz * 2018 * Dx1 - half-length in X of low edge of the face at Z=-Dz * 2019 * Dx2 - half-length in X of top edge of the face at Z=-Dz * 2020 * Alp1 - angle between Y-axis and the median joining top and * 2021 * low edges of the face at Z=-Dz * 2022 * Dy2 - half-length in Y of the face at Z=+Dz * 2023 * Dx3 - half-length in X of low edge of the face at Z=+Dz * 2024 * Dx4 - half-length in X of top edge of the face at Z=+Dz * 2025 * Alp2 - angle between Y-axis and the median joining top and * 2026 * low edges of the face at Z=+Dz * 2027 * * 2028 ***********************************************************************/ 2029 { 2030 G4double DzTthetaCphi = Dz*std::tan(Theta)*std::cos(Phi); 2031 G4double DzTthetaSphi = Dz*std::tan(Theta)*std::sin(Phi); 2032 G4double Dy1Talp1 = Dy1*std::tan(Alp1); 2033 G4double Dy2Talp2 = Dy2*std::tan(Alp2); 2034 2035 AllocateMemory(8,6); 2036 2037 pV[1] = G4Point3D(-DzTthetaCphi-Dy1Talp1-Dx1,-DzTthetaSphi-Dy1,-Dz); 2038 pV[2] = G4Point3D(-DzTthetaCphi-Dy1Talp1+Dx1,-DzTthetaSphi-Dy1,-Dz); 2039 pV[3] = G4Point3D(-DzTthetaCphi+Dy1Talp1+Dx2,-DzTthetaSphi+Dy1,-Dz); 2040 pV[4] = G4Point3D(-DzTthetaCphi+Dy1Talp1-Dx2,-DzTthetaSphi+Dy1,-Dz); 2041 pV[5] = G4Point3D( DzTthetaCphi-Dy2Talp2-Dx3, DzTthetaSphi-Dy2, Dz); 2042 pV[6] = G4Point3D( DzTthetaCphi-Dy2Talp2+Dx3, DzTthetaSphi-Dy2, Dz); 2043 pV[7] = G4Point3D( DzTthetaCphi+Dy2Talp2+Dx4, DzTthetaSphi+Dy2, Dz); 2044 pV[8] = G4Point3D( DzTthetaCphi+Dy2Talp2-Dx4, DzTthetaSphi+Dy2, Dz); 2045 2046 CreatePrism(); 2047 } 2048 2049 HepPolyhedronTrap::~HepPolyhedronTrap() = default; 2050 2051 HepPolyhedronPara::HepPolyhedronPara(G4double Dx, G4double Dy, G4double Dz, 2052 G4double Alpha, G4double Theta, 2053 G4double Phi) 2054 : HepPolyhedronTrap(Dz, Theta, Phi, Dy, Dx, Dx, Alpha, Dy, Dx, Dx, Alpha) {} 2055 2056 HepPolyhedronPara::~HepPolyhedronPara() = default; 2057 2058 HepPolyhedronParaboloid::HepPolyhedronParaboloid(G4double r1, 2059 G4double r2, 2060 G4double dz, 2061 G4double sPhi, 2062 G4double dPhi) 2063 /*********************************************************************** 2064 * * 2065 * Name: HepPolyhedronParaboloid Date: 28.06.07 * 2066 * Author: L.Lindroos, T.Nikitina (CERN), July 2007 Revised: 28.06.07 * 2067 * * 2068 * Function: Constructor for paraboloid * 2069 * * 2070 * Input: r1 - inside and outside radiuses at -Dz * 2071 * r2 - inside and outside radiuses at +Dz * 2072 * dz - half length in Z * 2073 * sPhi - starting angle of the segment * 2074 * dPhi - segment range * 2075 * * 2076 ***********************************************************************/ 2077 { 2078 static const G4double wholeCircle=twopi; 2079 2080 // C H E C K I N P U T P A R A M E T E R S 2081 2082 G4int k = 0; 2083 if (r1 < 0. || r2 <= 0.) k = 1; 2084 2085 if (dz <= 0.) k += 2; 2086 2087 G4double phi1, phi2, dphi; 2088 2089 if(dPhi < 0.) 2090 { 2091 phi2 = sPhi; phi1 = phi2 + dPhi; 2092 } 2093 else if(dPhi == 0.) 2094 { 2095 phi1 = sPhi; phi2 = phi1 + wholeCircle; 2096 } 2097 else 2098 { 2099 phi1 = sPhi; phi2 = phi1 + dPhi; 2100 } 2101 dphi = phi2 - phi1; 2102 2103 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2104 if (dphi > wholeCircle) k += 4; 2105 2106 if (k != 0) { 2107 std::cerr << "HepPolyhedronParaboloid: error in input parameters"; 2108 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2109 if ((k & 2) != 0) std::cerr << " (half-length)"; 2110 if ((k & 4) != 0) std::cerr << " (angles)"; 2111 std::cerr << std::endl; 2112 std::cerr << " r1=" << r1; 2113 std::cerr << " r2=" << r2; 2114 std::cerr << " dz=" << dz << " sPhi=" << sPhi << " dPhi=" << dPhi 2115 << std::endl; 2116 return; 2117 } 2118 2119 // P R E P A R E T W O P O L Y L I N E S 2120 2121 G4int n = GetNumberOfRotationSteps(); 2122 G4double dl = (r2 - r1) / n; 2123 G4double k1 = (r2*r2 - r1*r1) / 2 / dz; 2124 G4double k2 = (r2*r2 + r1*r1) / 2; 2125 2126 auto zz = new G4double[n + 2], rr = new G4double[n + 2]; 2127 2128 zz[0] = dz; 2129 rr[0] = r2; 2130 2131 for(G4int i = 1; i < n - 1; i++) 2132 { 2133 rr[i] = rr[i-1] - dl; 2134 zz[i] = (rr[i]*rr[i] - k2) / k1; 2135 if(rr[i] < 0) 2136 { 2137 rr[i] = 0; 2138 zz[i] = 0; 2139 } 2140 } 2141 2142 zz[n-1] = -dz; 2143 rr[n-1] = r1; 2144 2145 zz[n] = dz; 2146 rr[n] = 0; 2147 2148 zz[n+1] = -dz; 2149 rr[n+1] = 0; 2150 2151 // R O T A T E P O L Y L I N E S 2152 2153 RotateAroundZ(0, phi1, dphi, n, 2, zz, rr, -1, -1); 2154 SetReferences(); 2155 2156 delete [] zz; 2157 delete [] rr; 2158 } 2159 2160 HepPolyhedronParaboloid::~HepPolyhedronParaboloid() = default; 2161 2162 HepPolyhedronHype::HepPolyhedronHype(G4double r1, 2163 G4double r2, 2164 G4double sqrtan1, 2165 G4double sqrtan2, 2166 G4double halfZ) 2167 /*********************************************************************** 2168 * * 2169 * Name: HepPolyhedronHype Date: 14.04.08 * 2170 * Author: Tatiana Nikitina (CERN) Revised: 14.04.08 * 2171 * Evgueni Tcherniaev 01.12.20 * 2172 * * 2173 * Function: Constructor for Hype * 2174 * * 2175 * Input: r1 - inside radius at z=0 * 2176 * r2 - outside radiuses at z=0 * 2177 * sqrtan1 - sqr of tan of Inner Stereo Angle * 2178 * sqrtan2 - sqr of tan of Outer Stereo Angle * 2179 * halfZ - half length in Z * 2180 * * 2181 ***********************************************************************/ 2182 { 2183 static const G4double wholeCircle = twopi; 2184 2185 // C H E C K I N P U T P A R A M E T E R S 2186 2187 G4int k = 0; 2188 if (r1 < 0. || r2 < 0. || r1 >= r2) k = 1; 2189 if (halfZ <= 0.) k += 2; 2190 if (sqrtan1 < 0.|| sqrtan2 < 0.) k += 4; 2191 2192 if (k != 0) 2193 { 2194 std::cerr << "HepPolyhedronHype: error in input parameters"; 2195 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2196 if ((k & 2) != 0) std::cerr << " (half-length)"; 2197 if ((k & 4) != 0) std::cerr << " (angles)"; 2198 std::cerr << std::endl; 2199 std::cerr << " r1=" << r1 << " r2=" << r2; 2200 std::cerr << " halfZ=" << halfZ << " sqrTan1=" << sqrtan1 2201 << " sqrTan2=" << sqrtan2 2202 << std::endl; 2203 return; 2204 } 2205 2206 // P R E P A R E T W O P O L Y L I N E S 2207 2208 G4int ns = std::max(3, GetNumberOfRotationSteps()/4); 2209 G4int nz1 = (sqrtan1 == 0.) ? 2 : ns + 1; 2210 G4int nz2 = (sqrtan2 == 0.) ? 2 : ns + 1; 2211 auto zz = new G4double[nz1 + nz2]; 2212 auto rr = new G4double[nz1 + nz2]; 2213 2214 // external polyline 2215 G4double dz2 = 2.*halfZ/(nz2 - 1); 2216 for(G4int i = 0; i < nz2; ++i) 2217 { 2218 zz[i] = halfZ - dz2*i; 2219 rr[i] = std::sqrt(sqrtan2*zz[i]*zz[i] + r2*r2); 2220 } 2221 2222 // internal polyline 2223 G4double dz1 = 2.*halfZ/(nz1 - 1); 2224 for(G4int i = 0; i < nz1; ++i) 2225 { 2226 G4int j = nz2 + i; 2227 zz[j] = halfZ - dz1*i; 2228 rr[j] = std::sqrt(sqrtan1*zz[j]*zz[j] + r1*r1); 2229 } 2230 2231 // R O T A T E P O L Y L I N E S 2232 2233 RotateAroundZ(0, 0., wholeCircle, nz2, nz1, zz, rr, -1, -1); 2234 SetReferences(); 2235 2236 delete [] zz; 2237 delete [] rr; 2238 } 2239 2240 HepPolyhedronHype::~HepPolyhedronHype() = default; 2241 2242 HepPolyhedronCons::HepPolyhedronCons(G4double Rmn1, 2243 G4double Rmx1, 2244 G4double Rmn2, 2245 G4double Rmx2, 2246 G4double Dz, 2247 G4double Phi1, 2248 G4double Dphi) 2249 /*********************************************************************** 2250 * * 2251 * Name: HepPolyhedronCons::HepPolyhedronCons Date: 15.12.96 * 2252 * Author: E.Chernyaev (IHEP/Protvino) Revised: 15.12.96 * 2253 * * 2254 * Function: Constructor for CONS, TUBS, CONE, TUBE * 2255 * * 2256 * Input: Rmn1, Rmx1 - inside and outside radiuses at -Dz * 2257 * Rmn2, Rmx2 - inside and outside radiuses at +Dz * 2258 * Dz - half length in Z * 2259 * Phi1 - starting angle of the segment * 2260 * Dphi - segment range * 2261 * * 2262 ***********************************************************************/ 2263 { 2264 static const G4double wholeCircle=twopi; 2265 2266 // C H E C K I N P U T P A R A M E T E R S 2267 2268 G4int k = 0; 2269 if (Rmn1 < 0. || Rmx1 < 0. || Rmn2 < 0. || Rmx2 < 0.) k = 1; 2270 if (Rmn1 > Rmx1 || Rmn2 > Rmx2) k = 1; 2271 if (Rmn1 == Rmx1 && Rmn2 == Rmx2) k = 1; 2272 2273 if (Dz <= 0.) k += 2; 2274 2275 G4double phi1, phi2, dphi; 2276 if (Dphi < 0.) { 2277 phi2 = Phi1; phi1 = phi2 - Dphi; 2278 }else if (Dphi == 0.) { 2279 phi1 = Phi1; phi2 = phi1 + wholeCircle; 2280 }else{ 2281 phi1 = Phi1; phi2 = phi1 + Dphi; 2282 } 2283 dphi = phi2 - phi1; 2284 if (std::abs(dphi-wholeCircle) < perMillion) dphi = wholeCircle; 2285 if (dphi > wholeCircle) k += 4; 2286 2287 if (k != 0) { 2288 std::cerr << "HepPolyhedronCone(s)/Tube(s): error in input parameters"; 2289 if ((k & 1) != 0) std::cerr << " (radiuses)"; 2290 if ((k & 2) != 0) std::cerr << " (half-length)"; 2291 if ((k & 4) != 0) std::cerr << " (angles)"; 2292 std::cerr << std::endl; 2293 std::cerr << " Rmn1=" << Rmn1 << " Rmx1=" << Rmx1; 2294 std::cerr << " Rmn2=" << Rmn2 << " Rmx2=" << Rmx2; 2295 std::cerr << " Dz=" << Dz << " Phi1=" << Phi1 << " Dphi=" << Dphi 2296 << std::endl; 2297 return; 2298 } 2299 2300 // P R E P A R E T W O P O L Y L I N E S 2301 2302 G4double zz[4], rr[4]; 2303 zz[0] = Dz; 2304 zz[1] = -Dz; 2305 zz[2] = Dz; 2306 zz[3] = -Dz; 2307 rr[0] = Rmx2; 2308 rr[1] = Rmx1; 2309 rr[2] = Rmn2; 2310 rr[3] = Rmn1; 2311 2312 // R O T A T E P O L Y L I N E S 2313 2314 RotateAroundZ(0, phi1, dphi, 2, 2, zz, rr, -1, -1); 2315 SetReferences(); 2316 } 2317 2318 HepPolyhedronCons::~HepPolyhedronCons() = default; 2319 2320 HepPolyhedronCone::HepPolyhedronCone(G4double Rmn1, G4double Rmx1, 2321 G4double Rmn2, G4double Rmx2, 2322 G4double Dz) : 2323 HepPolyhedronCons(Rmn1, Rmx1, Rmn2, Rmx2, Dz, 0*deg, 360*deg) {} 2324 2325 HepPolyhedronCone::~HepPolyhedronCone() = default; 2326 2327 HepPolyhedronTubs::HepPolyhedronTubs(G4double Rmin, G4double Rmax, 2328 G4double Dz, 2329 G4double Phi1, G4double Dphi) 2330 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, Phi1, Dphi) {} 2331 2332 HepPolyhedronTubs::~HepPolyhedronTubs() = default; 2333 2334 HepPolyhedronTube::HepPolyhedronTube (G4double Rmin, G4double Rmax, 2335 G4double Dz) 2336 : HepPolyhedronCons(Rmin, Rmax, Rmin, Rmax, Dz, 0*deg, 360*deg) {} 2337 2338 HepPolyhedronTube::~HepPolyhedronTube () = default; 2339 2340 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2341 G4double dphi, 2342 G4int npdv, 2343 G4int nz, 2344 const G4double *z, 2345 const G4double *rmin, 2346 const G4double *rmax) 2347 /*********************************************************************** 2348 * * 2349 * Name: HepPolyhedronPgon Date: 09.12.96 * 2350 * Author: E.Chernyaev Revised: * 2351 * * 2352 * Function: Constructor of polyhedron for PGON, PCON * 2353 * * 2354 * Input: phi - initial phi * 2355 * dphi - delta phi * 2356 * npdv - number of steps along phi * 2357 * nz - number of z-planes (at least two) * 2358 * z[] - z coordinates of the slices * 2359 * rmin[] - smaller r at the slices * 2360 * rmax[] - bigger r at the slices * 2361 * * 2362 ***********************************************************************/ 2363 { 2364 // C H E C K I N P U T P A R A M E T E R S 2365 2366 if (dphi <= 0. || dphi > twopi) { 2367 std::cerr 2368 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2369 << std::endl; 2370 return; 2371 } 2372 2373 if (nz < 2) { 2374 std::cerr 2375 << "HepPolyhedronPgon/Pcon: number of z-planes less than two = " << nz 2376 << std::endl; 2377 return; 2378 } 2379 2380 if (npdv < 0) { 2381 std::cerr 2382 << "HepPolyhedronPgon/Pcon: error in number of phi-steps =" << npdv 2383 << std::endl; 2384 return; 2385 } 2386 2387 G4int i; 2388 for (i=0; i<nz; i++) { 2389 if (rmin[i] < 0. || rmax[i] < 0. || rmin[i] > rmax[i]) { 2390 std::cerr 2391 << "HepPolyhedronPgon: error in radiuses rmin[" << i << "]=" 2392 << rmin[i] << " rmax[" << i << "]=" << rmax[i] 2393 << std::endl; 2394 return; 2395 } 2396 } 2397 2398 // P R E P A R E T W O P O L Y L I N E S 2399 2400 G4double *zz, *rr; 2401 zz = new G4double[2*nz]; 2402 rr = new G4double[2*nz]; 2403 2404 if (z[0] > z[nz-1]) { 2405 for (i=0; i<nz; i++) { 2406 zz[i] = z[i]; 2407 rr[i] = rmax[i]; 2408 zz[i+nz] = z[i]; 2409 rr[i+nz] = rmin[i]; 2410 } 2411 }else{ 2412 for (i=0; i<nz; i++) { 2413 zz[i] = z[nz-i-1]; 2414 rr[i] = rmax[nz-i-1]; 2415 zz[i+nz] = z[nz-i-1]; 2416 rr[i+nz] = rmin[nz-i-1]; 2417 } 2418 } 2419 2420 // R O T A T E P O L Y L I N E S 2421 2422 G4int nodeVis = 1; 2423 G4int edgeVis = (npdv == 0) ? -1 : 1; 2424 RotateAroundZ(npdv, phi, dphi, nz, nz, zz, rr, nodeVis, edgeVis); 2425 SetReferences(); 2426 2427 delete [] zz; 2428 delete [] rr; 2429 } 2430 2431 HepPolyhedronPgon::HepPolyhedronPgon(G4double phi, 2432 G4double dphi, 2433 G4int npdv, 2434 const std::vector<G4TwoVector> &rz) 2435 /*********************************************************************** 2436 * * 2437 * Name: HepPolyhedronPgon Date: 12.05.21 * 2438 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 2439 * * 2440 * Function: Constructor of polyhedron for PGON, PCON * 2441 * * 2442 * Input: phi - initial phi * 2443 * dphi - delta phi * 2444 * npdv - number of steps along phi * 2445 * rz - rz-contour * 2446 * * 2447 ***********************************************************************/ 2448 { 2449 // C H E C K I N P U T P A R A M E T E R S 2450 2451 if (dphi <= 0. || dphi > twopi) { 2452 std::cerr 2453 << "HepPolyhedronPgon/Pcon: wrong delta phi = " << dphi 2454 << std::endl; 2455 return; 2456 } 2457 2458 if (npdv < 0) { 2459 std::cerr 2460 << "HepPolyhedronPgon/Pcon: error in number of phi-steps = " << npdv 2461 << std::endl; 2462 return; 2463 } 2464 2465 G4int nrz = (G4int)rz.size(); 2466 if (nrz < 3) { 2467 std::cerr 2468 << "HepPolyhedronPgon/Pcon: invalid number of nodes in rz-contour = " << nrz 2469 << std::endl; 2470 return; 2471 } 2472 2473 // R O T A T E P O L Y L I N E 2474 2475 G4int nodeVis = 1; 2476 G4int edgeVis = (npdv == 0) ? -1 : 1; 2477 RotateContourAroundZ(npdv, phi, dphi, rz, nodeVis, edgeVis); 2478 SetReferences(); 2479 } 2480 2481 HepPolyhedronPgon::~HepPolyhedronPgon() = default; 2482 2483 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, G4int nz, 2484 const G4double *z, 2485 const G4double *rmin, 2486 const G4double *rmax) 2487 : HepPolyhedronPgon(phi, dphi, 0, nz, z, rmin, rmax) {} 2488 2489 HepPolyhedronPcon::HepPolyhedronPcon(G4double phi, G4double dphi, 2490 const std::vector<G4TwoVector> &rz) 2491 : HepPolyhedronPgon(phi, dphi, 0, rz) {} 2492 2493 HepPolyhedronPcon::~HepPolyhedronPcon() = default; 2494 2495 HepPolyhedronSphere::HepPolyhedronSphere(G4double rmin, G4double rmax, 2496 G4double phi, G4double dphi, 2497 G4double the, G4double dthe) 2498 /*********************************************************************** 2499 * * 2500 * Name: HepPolyhedronSphere Date: 11.12.96 * 2501 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2502 * * 2503 * Function: Constructor of polyhedron for SPHERE * 2504 * * 2505 * Input: rmin - internal radius * 2506 * rmax - external radius * 2507 * phi - initial phi * 2508 * dphi - delta phi * 2509 * the - initial theta * 2510 * dthe - delta theta * 2511 * * 2512 ***********************************************************************/ 2513 { 2514 // C H E C K I N P U T P A R A M E T E R S 2515 2516 if (dphi <= 0. || dphi > twopi) { 2517 std::cerr 2518 << "HepPolyhedronSphere: wrong delta phi = " << dphi 2519 << std::endl; 2520 return; 2521 } 2522 2523 if (the < 0. || the > pi) { 2524 std::cerr 2525 << "HepPolyhedronSphere: wrong theta = " << the 2526 << std::endl; 2527 return; 2528 } 2529 2530 if (dthe <= 0. || dthe > pi) { 2531 std::cerr 2532 << "HepPolyhedronSphere: wrong delta theta = " << dthe 2533 << std::endl; 2534 return; 2535 } 2536 2537 if (the+dthe > pi) { 2538 std::cerr 2539 << "HepPolyhedronSphere: wrong theta + delta theta = " 2540 << the << " " << dthe 2541 << std::endl; 2542 return; 2543 } 2544 2545 if (rmin < 0. || rmin >= rmax) { 2546 std::cerr 2547 << "HepPolyhedronSphere: error in radiuses" 2548 << " rmin=" << rmin << " rmax=" << rmax 2549 << std::endl; 2550 return; 2551 } 2552 2553 // P R E P A R E T W O P O L Y L I N E S 2554 2555 G4int nds = (GetNumberOfRotationSteps() + 1) / 2; 2556 G4int np1 = G4int(dthe*nds/pi+.5) + 1; 2557 if (np1 <= 1) np1 = 2; 2558 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2559 2560 G4double *zz, *rr; 2561 zz = new G4double[np1+np2]; 2562 rr = new G4double[np1+np2]; 2563 2564 G4double a = dthe/(np1-1); 2565 G4double cosa, sina; 2566 for (G4int i=0; i<np1; i++) { 2567 cosa = std::cos(the+i*a); 2568 sina = std::sin(the+i*a); 2569 zz[i] = rmax*cosa; 2570 rr[i] = rmax*sina; 2571 if (np2 > 1) { 2572 zz[i+np1] = rmin*cosa; 2573 rr[i+np1] = rmin*sina; 2574 } 2575 } 2576 if (np2 == 1) { 2577 zz[np1] = 0.; 2578 rr[np1] = 0.; 2579 } 2580 2581 // R O T A T E P O L Y L I N E S 2582 2583 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2584 SetReferences(); 2585 2586 delete [] zz; 2587 delete [] rr; 2588 } 2589 2590 HepPolyhedronSphere::~HepPolyhedronSphere() = default; 2591 2592 HepPolyhedronTorus::HepPolyhedronTorus(G4double rmin, 2593 G4double rmax, 2594 G4double rtor, 2595 G4double phi, 2596 G4double dphi) 2597 /*********************************************************************** 2598 * * 2599 * Name: HepPolyhedronTorus Date: 11.12.96 * 2600 * Author: E.Chernyaev (IHEP/Protvino) Revised: * 2601 * * 2602 * Function: Constructor of polyhedron for TORUS * 2603 * * 2604 * Input: rmin - internal radius * 2605 * rmax - external radius * 2606 * rtor - radius of torus * 2607 * phi - initial phi * 2608 * dphi - delta phi * 2609 * * 2610 ***********************************************************************/ 2611 { 2612 // C H E C K I N P U T P A R A M E T E R S 2613 2614 if (dphi <= 0. || dphi > twopi) { 2615 std::cerr 2616 << "HepPolyhedronTorus: wrong delta phi = " << dphi 2617 << std::endl; 2618 return; 2619 } 2620 2621 if (rmin < 0. || rmin >= rmax || rmax >= rtor) { 2622 std::cerr 2623 << "HepPolyhedronTorus: error in radiuses" 2624 << " rmin=" << rmin << " rmax=" << rmax << " rtorus=" << rtor 2625 << std::endl; 2626 return; 2627 } 2628 2629 // P R E P A R E T W O P O L Y L I N E S 2630 2631 G4int np1 = GetNumberOfRotationSteps(); 2632 G4int np2 = rmin < spatialTolerance ? 1 : np1; 2633 2634 G4double *zz, *rr; 2635 zz = new G4double[np1+np2]; 2636 rr = new G4double[np1+np2]; 2637 2638 G4double a = twopi/np1; 2639 G4double cosa, sina; 2640 for (G4int i=0; i<np1; i++) { 2641 cosa = std::cos(i*a); 2642 sina = std::sin(i*a); 2643 zz[i] = rmax*cosa; 2644 rr[i] = rtor+rmax*sina; 2645 if (np2 > 1) { 2646 zz[i+np1] = rmin*cosa; 2647 rr[i+np1] = rtor+rmin*sina; 2648 } 2649 } 2650 if (np2 == 1) { 2651 zz[np1] = 0.; 2652 rr[np1] = rtor; 2653 np2 = -1; 2654 } 2655 2656 // R O T A T E P O L Y L I N E S 2657 2658 RotateAroundZ(0, phi, dphi, -np1, -np2, zz, rr, -1,-1); 2659 SetReferences(); 2660 2661 delete [] zz; 2662 delete [] rr; 2663 } 2664 2665 HepPolyhedronTorus::~HepPolyhedronTorus() = default; 2666 2667 HepPolyhedronTet::HepPolyhedronTet(const G4double p0[3], 2668 const G4double p1[3], 2669 const G4double p2[3], 2670 const G4double p3[3]) 2671 /*********************************************************************** 2672 * * 2673 * Name: HepPolyhedronTet Date: 21.02.2020 * 2674 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 2675 * * 2676 * Function: Constructor of polyhedron for TETrahedron * 2677 * * 2678 * Input: p0,p1,p2,p3 - vertices * 2679 * * 2680 ***********************************************************************/ 2681 { 2682 AllocateMemory(4,4); 2683 2684 pV[1].set(p0[0], p0[1], p0[2]); 2685 pV[2].set(p1[0], p1[1], p1[2]); 2686 pV[3].set(p2[0], p2[1], p2[2]); 2687 pV[4].set(p3[0], p3[1], p3[2]); 2688 2689 G4Vector3D v1(pV[2] - pV[1]); 2690 G4Vector3D v2(pV[3] - pV[1]); 2691 G4Vector3D v3(pV[4] - pV[1]); 2692 2693 if (v1.cross(v2).dot(v3) < 0.) 2694 { 2695 pV[3].set(p3[0], p3[1], p3[2]); 2696 pV[4].set(p2[0], p2[1], p2[2]); 2697 } 2698 2699 pF[1] = G4Facet(1,2, 3,4, 2,3); 2700 pF[2] = G4Facet(1,3, 4,4, 3,1); 2701 pF[3] = G4Facet(1,1, 2,4, 4,2); 2702 pF[4] = G4Facet(2,1, 3,2, 4,3); 2703 } 2704 2705 HepPolyhedronTet::~HepPolyhedronTet() = default; 2706 2707 HepPolyhedronEllipsoid::HepPolyhedronEllipsoid(G4double ax, G4double by, 2708 G4double cz, G4double zCut1, 2709 G4double zCut2) 2710 /*********************************************************************** 2711 * * 2712 * Name: HepPolyhedronEllipsoid Date: 25.02.05 * 2713 * Author: G.Guerrieri Revised: * 2714 * Evgueni Tcherniaev 20.01.22 * 2715 * * 2716 * Function: Constructor of polyhedron for ELLIPSOID * 2717 * * 2718 * Input: ax - semiaxis x * 2719 * by - semiaxis y * 2720 * cz - semiaxis z * 2721 * zCut1 - lower cut plane level (solid lies above this plane) * 2722 * zCut2 - upper cut plane level (solid lies below this plane) * 2723 * * 2724 ***********************************************************************/ 2725 { 2726 // C H E C K I N P U T P A R A M E T E R S 2727 2728 if (zCut1 >= cz || zCut2 <= -cz || zCut1 > zCut2) { 2729 std::cerr << "HepPolyhedronEllipsoid: wrong zCut1 = " << zCut1 2730 << " zCut2 = " << zCut2 2731 << " for given cz = " << cz << std::endl; 2732 return; 2733 } 2734 if (cz <= 0.0) { 2735 std::cerr << "HepPolyhedronEllipsoid: bad z semi-axis: cz = " << cz 2736 << std::endl; 2737 return; 2738 } 2739 2740 // P R E P A R E T W O P O L Y L I N E S 2741 // generate sphere of radius cz first, then rescale x and y later 2742 2743 G4double sthe = std::acos(zCut2/cz); 2744 G4double dthe = std::acos(zCut1/cz) - sthe; 2745 G4int nds = (GetNumberOfRotationSteps() + 1)/2; 2746 G4int np1 = G4int(dthe*nds/pi + 0.5) + 1; 2747 if (np1 <= 1) np1 = 2; 2748 G4int np2 = 2; 2749 2750 G4double *zz, *rr; 2751 zz = new G4double[np1 + np2]; 2752 rr = new G4double[np1 + np2]; 2753 if ((zz == nullptr) || (rr == nullptr)) 2754 { 2755 G4Exception("HepPolyhedronEllipsoid::HepPolyhedronEllipsoid", 2756 "greps1002", FatalException, "Out of memory"); 2757 } 2758 2759 G4double a = dthe/(np1 - 1); 2760 G4double cosa, sina; 2761 for (G4int i = 0; i < np1; ++i) 2762 { 2763 cosa = std::cos(sthe + i*a); 2764 sina = std::sin(sthe + i*a); 2765 zz[i] = cz*cosa; 2766 rr[i] = cz*sina; 2767 } 2768 zz[np1 + 0] = zCut2; 2769 rr[np1 + 0] = 0.; 2770 zz[np1 + 1] = zCut1; 2771 rr[np1 + 1] = 0.; 2772 2773 // R O T A T E P O L Y L I N E S 2774 2775 RotateAroundZ(0, 0., twopi, np1, np2, zz, rr, -1, -1); 2776 SetReferences(); 2777 2778 delete [] zz; 2779 delete [] rr; 2780 2781 // rescale x and y vertex coordinates 2782 G4double kx = ax/cz; 2783 G4double ky = by/cz; 2784 G4Point3D* p = pV; 2785 for (G4int i = 0; i < nvert; ++i, ++p) 2786 { 2787 p->setX(p->x()*kx); 2788 p->setY(p->y()*ky); 2789 } 2790 } 2791 2792 HepPolyhedronEllipsoid::~HepPolyhedronEllipsoid() = default; 2793 2794 HepPolyhedronEllipticalCone::HepPolyhedronEllipticalCone(G4double ax, 2795 G4double ay, 2796 G4double h, 2797 G4double zTopCut) 2798 /*********************************************************************** 2799 * * 2800 * Name: HepPolyhedronEllipticalCone Date: 8.9.2005 * 2801 * Author: D.Anninos Revised: 9.9.2005 * 2802 * * 2803 * Function: Constructor for EllipticalCone * 2804 * * 2805 * Input: ax, ay - X & Y semi axes at z = 0 * 2806 * h - height of full cone * 2807 * zTopCut - Top Cut in Z Axis * 2808 * * 2809 ***********************************************************************/ 2810 { 2811 // C H E C K I N P U T P A R A M E T E R S 2812 2813 G4int k = 0; 2814 if ( (ax <= 0.) || (ay <= 0.) || (h <= 0.) || (zTopCut <= 0.) ) { k = 1; } 2815 2816 if (k != 0) { 2817 std::cerr << "HepPolyhedronCone: error in input parameters"; 2818 std::cerr << std::endl; 2819 return; 2820 } 2821 2822 // P R E P A R E T W O P O L Y L I N E S 2823 2824 zTopCut = (h >= zTopCut ? zTopCut : h); 2825 2826 G4double *zz, *rr; 2827 zz = new G4double[4]; 2828 rr = new G4double[4]; 2829 zz[0] = zTopCut; 2830 zz[1] = -zTopCut; 2831 zz[2] = zTopCut; 2832 zz[3] = -zTopCut; 2833 rr[0] = (h-zTopCut); 2834 rr[1] = (h+zTopCut); 2835 rr[2] = 0.; 2836 rr[3] = 0.; 2837 2838 // R O T A T E P O L Y L I N E S 2839 2840 RotateAroundZ(0, 0., twopi, 2, 2, zz, rr, -1, -1); 2841 SetReferences(); 2842 2843 delete [] zz; 2844 delete [] rr; 2845 2846 // rescale x and y vertex coordinates 2847 { 2848 G4Point3D * p= pV; 2849 for (G4int i=0; i<nvert; i++, p++) { 2850 p->setX( p->x() * ax ); 2851 p->setY( p->y() * ay ); 2852 } 2853 } 2854 } 2855 2856 HepPolyhedronEllipticalCone::~HepPolyhedronEllipticalCone() = default; 2857 2858 HepPolyhedronHyperbolicMirror::HepPolyhedronHyperbolicMirror(G4double a, 2859 G4double h, 2860 G4double r) 2861 /*********************************************************************** 2862 * * 2863 * Name: HepPolyhedronHyperbolicMirror Date: 22.02.2020 * 2864 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 2865 * * 2866 * Function: Create polyhedron for Hyperbolic mirror * 2867 * * 2868 * Input: a - half-separation * 2869 * h - height * 2870 * r - radius * 2871 * * 2872 ***********************************************************************/ 2873 { 2874 G4double H = std::abs(h); 2875 G4double R = std::abs(r); 2876 G4double A = std::abs(a); 2877 G4double B = A*R/std::sqrt(2*A*H + H*H); 2878 2879 // P R E P A R E T W O P O L Y L I N E S 2880 2881 G4int np1 = (A == 0.) ? 2 : std::max(3, GetNumberOfRotationSteps()/4) + 1; 2882 G4int np2 = 2; 2883 G4double maxAng = (A == 0.) ? 0. : std::acosh(1. + H/A); 2884 G4double delAng = maxAng/(np1 - 1); 2885 2886 auto zz = new G4double[np1 + np2]; 2887 auto rr = new G4double[np1 + np2]; 2888 2889 // 1st polyline 2890 zz[0] = H; 2891 rr[0] = R; 2892 for (G4int iz = 1; iz < np1 - 1; ++iz) 2893 { 2894 G4double ang = maxAng - iz*delAng; 2895 zz[iz] = A*std::cosh(ang) - A; 2896 rr[iz] = B*std::sinh(ang); 2897 } 2898 zz[np1 - 1] = 0.; 2899 rr[np1 - 1] = 0.; 2900 2901 // 2nd polyline 2902 zz[np1] = H; 2903 rr[np1] = 0.; 2904 zz[np1 + 1] = 0.; 2905 rr[np1 + 1] = 0.; 2906 2907 // R O T A T E P O L Y L I N E S 2908 2909 G4double phi = 0.; 2910 G4double dphi = CLHEP::twopi; 2911 RotateAroundZ(0, phi, dphi, np1, np2, zz, rr, -1, -1); 2912 SetReferences(); 2913 2914 delete [] zz; 2915 delete [] rr; 2916 } 2917 2918 HepPolyhedronHyperbolicMirror::~HepPolyhedronHyperbolicMirror() = default; 2919 2920 HepPolyhedronTetMesh:: 2921 HepPolyhedronTetMesh(const std::vector<G4ThreeVector>& tetrahedra) 2922 /*********************************************************************** 2923 * * 2924 * Name: HepPolyhedronTetMesh Date: 26.03.2022 * 2925 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 2926 * * 2927 * Function: Create polyhedron for tetrahedron mesh * 2928 * * 2929 * Input: tetrahedra - array of tetrahedron vertices, four vertices * 2930 * per tetrahedron * 2931 * * 2932 ***********************************************************************/ 2933 { 2934 // Check size of input vector 2935 G4int nnodes = (G4int)tetrahedra.size(); 2936 if (nnodes == 0) 2937 { 2938 std::cerr 2939 << "HepPolyhedronTetMesh: Empty tetrahedron mesh" << std::endl; 2940 return; 2941 } 2942 G4int ntet = nnodes/4; 2943 if (nnodes != ntet*4) 2944 { 2945 std::cerr << "HepPolyhedronTetMesh: Number of nodes = " << nnodes 2946 << " in tetrahedron mesh is NOT multiple of 4" 2947 << std::endl; 2948 return; 2949 } 2950 2951 // Find coincident vertices using hash table techniques. 2952 // This could be done using std::unordered_map, but the code 2953 // below runs faster. 2954 std::vector<G4int> iheads(nnodes, -1); 2955 std::vector<std::pair<G4int,G4int>> ipairs(nnodes,std::pair(-1,-1)); 2956 for (G4int i = 0; i < nnodes; ++i) 2957 { 2958 // Generate hash key 2959 G4ThreeVector point = tetrahedra[i]; 2960 auto key = std::hash<G4double>()(point.x()); 2961 key ^= std::hash<G4double>()(point.y()); 2962 key ^= std::hash<G4double>()(point.z()); 2963 key %= nnodes; 2964 // Check head of the list 2965 if (iheads[key] < 0) 2966 { 2967 iheads[key] = i; 2968 ipairs[i].first = i; 2969 continue; 2970 } 2971 // Loop along the list 2972 for (G4int icur = iheads[key], iprev = 0;;) 2973 { 2974 G4int icheck = ipairs[icur].first; 2975 if (tetrahedra[icheck] == point) 2976 { 2977 ipairs[i].first = icheck; // coincident vertex 2978 break; 2979 } 2980 iprev = icur; 2981 icur = ipairs[icur].second; 2982 // Append vertex to the list 2983 if (icur < 0) 2984 { 2985 ipairs[i].first = i; 2986 ipairs[iprev].second = i; 2987 break; 2988 } 2989 } 2990 } 2991 2992 // Create vector of original facets 2993 struct facet 2994 { 2995 G4int i1, i2, i3; 2996 facet() : i1(0), i2(0), i3(0) {}; 2997 facet(G4int k1, G4int k2, G4int k3) : i1(k1), i2(k2), i3(k3) {}; 2998 }; 2999 G4int nfacets = nnodes; 3000 std::vector<facet> ifacets(nfacets); 3001 for (G4int i = 0; i < nfacets; i += 4) 3002 { 3003 G4int i0 = ipairs[i + 0].first; 3004 G4int i1 = ipairs[i + 1].first; 3005 G4int i2 = ipairs[i + 2].first; 3006 G4int i3 = ipairs[i + 3].first; 3007 if (i0 > i1) std::swap(i0, i1); 3008 if (i0 > i2) std::swap(i0, i2); 3009 if (i0 > i3) std::swap(i0, i3); 3010 if (i1 > i2) std::swap(i1, i2); 3011 if (i1 > i3) std::swap(i1, i3); 3012 G4ThreeVector e1 = tetrahedra[i1] - tetrahedra[i0]; 3013 G4ThreeVector e2 = tetrahedra[i2] - tetrahedra[i0]; 3014 G4ThreeVector e3 = tetrahedra[i3] - tetrahedra[i0]; 3015 G4double volume = (e1.cross(e2)).dot(e3); 3016 if (volume > 0.) std::swap(i2, i3); 3017 ifacets[i + 0] = facet(i0, i1, i2); 3018 ifacets[i + 1] = facet(i0, i2, i3); 3019 ifacets[i + 2] = facet(i0, i3, i1); 3020 ifacets[i + 3] = facet(i1, i3, i2); 3021 } 3022 3023 // Find shared facets 3024 std::fill(iheads.begin(), iheads.end(), -1); 3025 std::fill(ipairs.begin(), ipairs.end(), std::pair(-1,-1)); 3026 for (G4int i = 0; i < nfacets; ++i) 3027 { 3028 // Check head of the list 3029 G4int key = ifacets[i].i1; 3030 if (iheads[key] < 0) 3031 { 3032 iheads[key] = i; 3033 ipairs[i].first = i; 3034 continue; 3035 } 3036 // Loop along the list 3037 G4int i2 = ifacets[i].i2, i3 = ifacets[i].i3; 3038 for (G4int icur = iheads[key], iprev = -1;;) 3039 { 3040 G4int icheck = ipairs[icur].first; 3041 if (ifacets[icheck].i2 == i3 && ifacets[icheck].i3 == i2) 3042 { 3043 if (iprev < 0) 3044 { 3045 iheads[key] = ipairs[icur].second; 3046 } 3047 else 3048 { 3049 ipairs[iprev].second = ipairs[icur].second; 3050 } 3051 ipairs[icur].first = -1; // shared facet 3052 ipairs[icur].second = -1; 3053 break; 3054 } 3055 iprev = icur; 3056 icur = ipairs[icur].second; 3057 // Append facet to the list 3058 if (icur < 0) 3059 { 3060 ipairs[i].first = i; 3061 ipairs[iprev].second = i; 3062 break; 3063 } 3064 } 3065 } 3066 3067 // Count vertices and facets skipping shared facets 3068 std::fill(iheads.begin(), iheads.end(), -1); 3069 G4int nver = 0, nfac = 0; 3070 for (G4int i = 0; i < nfacets; ++i) 3071 { 3072 if (ipairs[i].first < 0) continue; 3073 G4int i1 = ifacets[i].i1; 3074 G4int i2 = ifacets[i].i2; 3075 G4int i3 = ifacets[i].i3; 3076 if (iheads[i1] < 0) iheads[i1] = nver++; 3077 if (iheads[i2] < 0) iheads[i2] = nver++; 3078 if (iheads[i3] < 0) iheads[i3] = nver++; 3079 nfac++; 3080 } 3081 3082 // Construct polyhedron 3083 AllocateMemory(nver, nfac); 3084 for (G4int i = 0; i < nnodes; ++i) 3085 { 3086 G4int k = iheads[i]; 3087 if (k >= 0) SetVertex(k + 1, tetrahedra[i]); 3088 } 3089 for (G4int i = 0, k = 0; i < nfacets; ++i) 3090 { 3091 if (ipairs[i].first < 0) continue; 3092 G4int i1 = iheads[ifacets[i].i1] + 1; 3093 G4int i2 = iheads[ifacets[i].i2] + 1; 3094 G4int i3 = iheads[ifacets[i].i3] + 1; 3095 SetFacet(++k, i1, i2, i3); 3096 } 3097 SetReferences(); 3098 } 3099 3100 HepPolyhedronTetMesh::~HepPolyhedronTetMesh() = default; 3101 3102 HepPolyhedronBoxMesh:: 3103 HepPolyhedronBoxMesh(G4double sizeX, G4double sizeY, G4double sizeZ, 3104 const std::vector<G4ThreeVector>& positions) 3105 /*********************************************************************** 3106 * * 3107 * Name: HepPolyhedronBoxMesh Date: 07.04.2022 * 3108 * Author: E.Tcherniaev (E.Chernyaev) Revised: * 3109 * * 3110 * Function: Create polyhedron for box mesh * 3111 * * 3112 * Input: sizeX, sizeY, sizeZ - dimensions of the mesh cell * 3113 * positions - vector of cell centres * 3114 * * 3115 ***********************************************************************/ 3116 { 3117 G4int nbox = (G4int)positions.size(); 3118 if (nbox == 0) 3119 { 3120 std::cerr << "HepPolyhedronBoxMesh: Empty box mesh" << std::endl; 3121 return; 3122 } 3123 // compute inverse dimensions 3124 G4double invx = 1./sizeX, invy = 1./sizeY, invz = 1./sizeZ; 3125 // find mesh bounding box 3126 G4ThreeVector pmin = positions[0], pmax = positions[0]; 3127 for (const auto& p: positions) 3128 { 3129 if (pmin.x() > p.x()) pmin.setX(p.x()); 3130 if (pmin.y() > p.y()) pmin.setY(p.y()); 3131 if (pmin.z() > p.z()) pmin.setZ(p.z()); 3132 if (pmax.x() < p.x()) pmax.setX(p.x()); 3133 if (pmax.y() < p.y()) pmax.setY(p.y()); 3134 if (pmax.z() < p.z()) pmax.setZ(p.z()); 3135 } 3136 // find number of voxels 3137 G4int nx = (pmax.x() - pmin.x())*invx + 1.5; 3138 G4int ny = (pmax.y() - pmin.y())*invy + 1.5; 3139 G4int nz = (pmax.z() - pmin.z())*invz + 1.5; 3140 // create structures for voxels and node indices 3141 std::vector<char> voxels(nx*ny*nz, 0); 3142 std::vector<G4int> indices((nx+1)*(ny+1)*(nz+1), 0); 3143 // mark voxels listed in positions 3144 G4int kx = ny*nz, ky = nz; 3145 for (const auto& p: positions) 3146 { 3147 G4int ix = (p.x() - pmin.x())*invx + 0.5; 3148 G4int iy = (p.y() - pmin.y())*invy + 0.5; 3149 G4int iz = (p.z() - pmin.z())*invz + 0.5; 3150 G4int i = ix*kx + iy*ky + iz; 3151 voxels[i] = 1; 3152 } 3153 // count number of vertices and facets 3154 // set indices 3155 G4int kvx = (ny + 1)*(nz + 1), kvy = nz + 1; 3156 G4int nver = 0, nfac = 0; 3157 for (const auto& p: positions) 3158 { 3159 G4int ix = (p.x() - pmin.x())*invx + 0.5; 3160 G4int iy = (p.y() - pmin.y())*invy + 0.5; 3161 G4int iz = (p.z() - pmin.z())*invz + 0.5; 3162 // 3163 // 011 111 3164 // +---–---+ 3165 // | 001 | 101 3166 // | +---–---+ 3167 // | | | | 3168 // +---|---+ | 3169 // 010 | 110 | 3170 // +-------+ 3171 // 000 100 3172 // 3173 G4int vcheck = 0; 3174 // check (ix - 1) side 3175 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx + iy*ky + iz]; 3176 if (vcheck == 0) 3177 { 3178 nfac++; 3179 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3180 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3181 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3182 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3183 if (indices[i1] == 0) indices[i1] = ++nver; 3184 if (indices[i2] == 0) indices[i2] = ++nver; 3185 if (indices[i3] == 0) indices[i3] = ++nver; 3186 if (indices[i4] == 0) indices[i4] = ++nver; 3187 } 3188 // check (ix + 1) side 3189 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+1)*kx + iy*ky + iz]; 3190 if (vcheck == 0) 3191 { 3192 nfac++; 3193 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3194 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3195 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3196 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3197 if (indices[i1] == 0) indices[i1] = ++nver; 3198 if (indices[i2] == 0) indices[i2] = ++nver; 3199 if (indices[i3] == 0) indices[i3] = ++nver; 3200 if (indices[i4] == 0) indices[i4] = ++nver; 3201 } 3202 // check (iy - 1) side 3203 vcheck = (iy == 0) ? 0 : voxels[ix*kx + (iy-1)*ky + iz]; 3204 if (vcheck == 0) 3205 { 3206 nfac++; 3207 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3208 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3209 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3210 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3211 if (indices[i1] == 0) indices[i1] = ++nver; 3212 if (indices[i2] == 0) indices[i2] = ++nver; 3213 if (indices[i3] == 0) indices[i3] = ++nver; 3214 if (indices[i4] == 0) indices[i4] = ++nver; 3215 } 3216 // check (iy + 1) side 3217 vcheck = (iy == ny - 1) ? 0 : voxels[ix*kx + (iy+1)*ky + iz]; 3218 if (vcheck == 0) 3219 { 3220 nfac++; 3221 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3222 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3223 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3224 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3225 if (indices[i1] == 0) indices[i1] = ++nver; 3226 if (indices[i2] == 0) indices[i2] = ++nver; 3227 if (indices[i3] == 0) indices[i3] = ++nver; 3228 if (indices[i4] == 0) indices[i4] = ++nver; 3229 } 3230 // check (iz - 1) side 3231 vcheck = (iz == 0) ? 0 : voxels[ix*kx + iy*ky + (iz-1)]; 3232 if (vcheck == 0) 3233 { 3234 nfac++; 3235 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3236 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3237 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3238 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3239 if (indices[i1] == 0) indices[i1] = ++nver; 3240 if (indices[i2] == 0) indices[i2] = ++nver; 3241 if (indices[i3] == 0) indices[i3] = ++nver; 3242 if (indices[i4] == 0) indices[i4] = ++nver; 3243 } 3244 // check (iz + 1) side 3245 vcheck = (iz == nz - 1) ? 0 : voxels[ix*kx + iy*ky + (iz+1)]; 3246 if (vcheck == 0) 3247 { 3248 nfac++; 3249 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3250 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3251 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3252 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3253 if (indices[i1] == 0) indices[i1] = ++nver; 3254 if (indices[i2] == 0) indices[i2] = ++nver; 3255 if (indices[i3] == 0) indices[i3] = ++nver; 3256 if (indices[i4] == 0) indices[i4] = ++nver; 3257 } 3258 } 3259 // Construct polyhedron 3260 AllocateMemory(nver, nfac); 3261 G4ThreeVector p0(pmin.x() - 0.5*sizeX, pmin.y() - 0.5*sizeY, pmin.z() - 0.5*sizeZ); 3262 for (G4int ix = 0; ix <= nx; ++ix) 3263 { 3264 for (G4int iy = 0; iy <= ny; ++iy) 3265 { 3266 for (G4int iz = 0; iz <= nz; ++iz) 3267 { 3268 G4int i = ix*kvx + iy*kvy + iz; 3269 if (indices[i] == 0) continue; 3270 SetVertex(indices[i], p0 + G4ThreeVector(ix*sizeX, iy*sizeY, iz*sizeZ)); 3271 } 3272 } 3273 } 3274 nfac = 0; 3275 for (const auto& p: positions) 3276 { 3277 G4int ix = (p.x() - pmin.x())*invx + 0.5; 3278 G4int iy = (p.y() - pmin.y())*invy + 0.5; 3279 G4int iz = (p.z() - pmin.z())*invz + 0.5; 3280 G4int vcheck = 0; 3281 // check (ix - 1) side 3282 vcheck = (ix == 0) ? 0 : voxels[(ix-1)*kx + iy*ky + iz]; 3283 if (vcheck == 0) 3284 { 3285 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3286 G4int i2 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3287 G4int i3 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3288 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3289 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3290 } 3291 // check (ix + 1) side 3292 vcheck = (ix == nx - 1) ? 0 : voxels[(ix+1)*kx + iy*ky + iz]; 3293 if (vcheck == 0) 3294 { 3295 G4int i1 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3296 G4int i2 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3297 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3298 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3299 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3300 3301 } 3302 // check (iy - 1) side 3303 vcheck = (iy == 0) ? 0 : voxels[ix*kx + (iy-1)*ky + iz]; 3304 if (vcheck == 0) 3305 { 3306 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3307 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3308 G4int i3 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3309 G4int i4 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3310 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3311 } 3312 // check (iy + 1) side 3313 vcheck = (iy == ny - 1) ? 0 : voxels[ix*kx + (iy+1)*ky + iz]; 3314 if (vcheck == 0) 3315 { 3316 G4int i1 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3317 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3318 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3319 G4int i4 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3320 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3321 } 3322 // check (iz - 1) side 3323 vcheck = (iz == 0) ? 0 : voxels[ix*kx + iy*ky + (iz-1)]; 3324 if (vcheck == 0) 3325 { 3326 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+0); // 000 3327 G4int i2 = (ix+0)*kvx + (iy+1)*kvy + (iz+0); // 010 3328 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+0); // 110 3329 G4int i4 = (ix+1)*kvx + (iy+0)*kvy + (iz+0); // 100 3330 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3331 } 3332 // check (iz + 1) side 3333 vcheck = (iz == nz - 1) ? 0 : voxels[ix*kx + iy*ky + (iz+1)]; 3334 if (vcheck == 0) 3335 { 3336 G4int i1 = (ix+0)*kvx + (iy+0)*kvy + (iz+1); // 001 3337 G4int i2 = (ix+1)*kvx + (iy+0)*kvy + (iz+1); // 101 3338 G4int i3 = (ix+1)*kvx + (iy+1)*kvy + (iz+1); // 111 3339 G4int i4 = (ix+0)*kvx + (iy+1)*kvy + (iz+1); // 011 3340 SetFacet(++nfac, indices[i1], indices[i2], indices[i3], indices[i4]); 3341 } 3342 } 3343 SetReferences(); 3344 } 3345 3346 HepPolyhedronBoxMesh::~HepPolyhedronBoxMesh() = default; 3347 3348 G4ThreadLocal 3349 G4int HepPolyhedron::fNumberOfRotationSteps = DEFAULT_NUMBER_OF_STEPS; 3350 /*********************************************************************** 3351 * * 3352 * Name: HepPolyhedron::fNumberOfRotationSteps Date: 24.06.97 * 3353 * Author: J.Allison (Manchester University) Revised: * 3354 * * 3355 * Function: Number of steps for whole circle * 3356 * * 3357 ***********************************************************************/ 3358 3359 #include "BooleanProcessor.src" 3360 3361 HepPolyhedron HepPolyhedron::add(const HepPolyhedron & p) const 3362 /*********************************************************************** 3363 * * 3364 * Name: HepPolyhedron::add Date: 19.03.00 * 3365 * Author: E.Chernyaev Revised: * 3366 * * 3367 * Function: Boolean "union" of two polyhedra * 3368 * * 3369 ***********************************************************************/ 3370 { 3371 G4int ierr; 3372 BooleanProcessor processor; 3373 return processor.execute(OP_UNION, *this, p,ierr); 3374 } 3375 3376 HepPolyhedron HepPolyhedron::intersect(const HepPolyhedron & p) const 3377 /*********************************************************************** 3378 * * 3379 * Name: HepPolyhedron::intersect Date: 19.03.00 * 3380 * Author: E.Chernyaev Revised: * 3381 * * 3382 * Function: Boolean "intersection" of two polyhedra * 3383 * * 3384 ***********************************************************************/ 3385 { 3386 G4int ierr; 3387 BooleanProcessor processor; 3388 return processor.execute(OP_INTERSECTION, *this, p,ierr); 3389 } 3390 3391 HepPolyhedron HepPolyhedron::subtract(const HepPolyhedron & p) const 3392 /*********************************************************************** 3393 * * 3394 * Name: HepPolyhedron::add Date: 19.03.00 * 3395 * Author: E.Chernyaev Revised: * 3396 * * 3397 * Function: Boolean "subtraction" of "p" from "this" * 3398 * * 3399 ***********************************************************************/ 3400 { 3401 G4int ierr; 3402 BooleanProcessor processor; 3403 return processor.execute(OP_SUBTRACTION, *this, p,ierr); 3404 } 3405 3406 //NOTE : include the code of HepPolyhedronProcessor here 3407 // since there is no BooleanProcessor.h 3408 3409 #undef INTERSECTION 3410 3411 #include "HepPolyhedronProcessor.src" 3412