Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussLaguerreQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4GaussLaguerreQ class implementation
 27 //
 28 // Author: V.Grichine, 13.05.1997
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4GaussLaguerreQ.hh"
 32 
 33 // ------------------------------------------------------------
 34 //
 35 // Constructor for Gauss-Laguerre quadrature method: integral from zero to
 36 // infinity of std::pow(x,alpha)*std::exp(-x)*f(x).
 37 // The value of nLaguerre sets the accuracy.
 38 // The constructor creates arrays fAbscissa[0,..,nLaguerre-1] and
 39 // fWeight[0,..,nLaguerre-1] .
 40 //
 41 
 42 G4GaussLaguerreQ::G4GaussLaguerreQ(function pFunction, G4double alpha,
 43                                    G4int nLaguerre)
 44   : G4VGaussianQuadrature(pFunction)
 45 {
 46   const G4double tolerance = 1.0e-10;
 47   const G4int maxNumber    = 12;
 48   G4int i = 1, k = 1;
 49   G4double newton0 = 0.0, newton1 = 0.0, temp1 = 0.0, temp2 = 0.0, temp3 = 0.0,
 50            temp = 0.0, cofi = 0.0;
 51 
 52   fNumber   = nLaguerre;
 53   fAbscissa = new G4double[fNumber];
 54   fWeight   = new G4double[fNumber];
 55 
 56   for(i = 1; i <= fNumber; ++i)  // Loop over the desired roots
 57   {
 58     if(i == 1)
 59     {
 60       newton0 = (1.0 + alpha) * (3.0 + 0.92 * alpha) /
 61                 (1.0 + 2.4 * fNumber + 1.8 * alpha);
 62     }
 63     else if(i == 2)
 64     {
 65       newton0 += (15.0 + 6.25 * alpha) / (1.0 + 0.9 * alpha + 2.5 * fNumber);
 66     }
 67     else
 68     {
 69       cofi = i - 2;
 70       newton0 += ((1.0 + 2.55 * cofi) / (1.9 * cofi) +
 71                   1.26 * cofi * alpha / (1.0 + 3.5 * cofi)) *
 72                  (newton0 - fAbscissa[i - 3]) / (1.0 + 0.3 * alpha);
 73     }
 74     for(k = 1; k <= maxNumber; ++k)
 75     {
 76       temp1 = 1.0;
 77       temp2 = 0.0;
 78       for(G4int j = 1; j <= fNumber; ++j)
 79       {
 80         temp3 = temp2;
 81         temp2 = temp1;
 82         temp1 =
 83           ((2 * j - 1 + alpha - newton0) * temp2 - (j - 1 + alpha) * temp3) / j;
 84       }
 85       temp    = (fNumber * temp1 - (fNumber + alpha) * temp2) / newton0;
 86       newton1 = newton0;
 87       newton0 = newton1 - temp1 / temp;
 88       if(std::fabs(newton0 - newton1) <= tolerance)
 89       {
 90         break;
 91       }
 92     }
 93     if(k > maxNumber)
 94     {
 95       G4Exception("G4GaussLaguerreQ::G4GaussLaguerreQ()", "OutOfRange",
 96                   FatalException,
 97                   "Too many iterations in Gauss-Laguerre constructor");
 98     }
 99 
100     fAbscissa[i - 1] = newton0;
101     fWeight[i - 1]   = -std::exp(GammaLogarithm(alpha + fNumber) -
102                                GammaLogarithm((G4double) fNumber)) /
103                      (temp * fNumber * temp2);
104   }
105 }
106 
107 // -----------------------------------------------------------------
108 //
109 // Gauss-Laguerre method for integration of
110 // std::pow(x,alpha)*std::exp(-x)*pFunction(x)
111 // from zero up to infinity. pFunction is evaluated in fNumber points
112 // for which fAbscissa[i] and fWeight[i] arrays were created in
113 // G4VGaussianQuadrature(double,int) constructor
114 
115 G4double G4GaussLaguerreQ::Integral() const
116 {
117   G4double integral = 0.0;
118   for(G4int i = 0; i < fNumber; ++i)
119   {
120     integral += fWeight[i] * fFunction(fAbscissa[i]);
121   }
122   return integral;
123 }
124