Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/src/G4GaussJacobiQ.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4GaussJacobiQ class implementation
 27 //
 28 // Author: V.Grichine, 13.05.1997
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4GaussJacobiQ.hh"
 32 
 33 // -------------------------------------------------------------
 34 //
 35 // Constructor for Gauss-Jacobi integration method.
 36 //
 37 
 38 G4GaussJacobiQ::G4GaussJacobiQ(function pFunction, G4double alpha,
 39                                G4double beta, G4int nJacobi)
 40   : G4VGaussianQuadrature(pFunction)
 41 
 42 {
 43   const G4double tolerance = 1.0e-12;
 44   const G4double maxNumber = 12;
 45   G4int i = 1, k = 1;
 46   G4double root      = 0.;
 47   G4double alphaBeta = 0.0, alphaReduced = 0.0, betaReduced = 0.0, root1 = 0.0,
 48            root2 = 0.0, root3 = 0.0;
 49   G4double a = 0.0, b = 0.0, c = 0.0, newton1 = 0.0, newton2 = 0.0,
 50            newton3 = 0.0, newton0 = 0.0, temp = 0.0, rootTemp = 0.0;
 51 
 52   fNumber   = nJacobi;
 53   fAbscissa = new G4double[fNumber];
 54   fWeight   = new G4double[fNumber];
 55 
 56   for(i = 1; i <= nJacobi; ++i)
 57   {
 58     if(i == 1)
 59     {
 60       alphaReduced = alpha / nJacobi;
 61       betaReduced  = beta / nJacobi;
 62       root1        = (1.0 + alpha) * (2.78002 / (4.0 + nJacobi * nJacobi) +
 63                                0.767999 * alphaReduced / nJacobi);
 64       root2        = 1.0 + 1.48 * alphaReduced + 0.96002 * betaReduced +
 65               0.451998 * alphaReduced * alphaReduced +
 66               0.83001 * alphaReduced * betaReduced;
 67       root = 1.0 - root1 / root2;
 68     }
 69     else if(i == 2)
 70     {
 71       root1 = (4.1002 + alpha) / ((1.0 + alpha) * (1.0 + 0.155998 * alpha));
 72       root2 = 1.0 + 0.06 * (nJacobi - 8.0) * (1.0 + 0.12 * alpha) / nJacobi;
 73       root3 =
 74         1.0 + 0.012002 * beta * (1.0 + 0.24997 * std::fabs(alpha)) / nJacobi;
 75       root -= (1.0 - root) * root1 * root2 * root3;
 76     }
 77     else if(i == 3)
 78     {
 79       root1 = (1.67001 + 0.27998 * alpha) / (1.0 + 0.37002 * alpha);
 80       root2 = 1.0 + 0.22 * (nJacobi - 8.0) / nJacobi;
 81       root3 = 1.0 + 8.0 * beta / ((6.28001 + beta) * nJacobi * nJacobi);
 82       root -= (fAbscissa[0] - root) * root1 * root2 * root3;
 83     }
 84     else if(i == nJacobi - 1)
 85     {
 86       root1 = (1.0 + 0.235002 * beta) / (0.766001 + 0.118998 * beta);
 87       root2 = 1.0 / (1.0 + 0.639002 * (nJacobi - 4.0) /
 88                              (1.0 + 0.71001 * (nJacobi - 4.0)));
 89       root3 = 1.0 / (1.0 + 20.0 * alpha / ((7.5 + alpha) * nJacobi * nJacobi));
 90       root += (root - fAbscissa[nJacobi - 4]) * root1 * root2 * root3;
 91     }
 92     else if(i == nJacobi)
 93     {
 94       root1 = (1.0 + 0.37002 * beta) / (1.67001 + 0.27998 * beta);
 95       root2 = 1.0 / (1.0 + 0.22 * (nJacobi - 8.0) / nJacobi);
 96       root3 =
 97         1.0 / (1.0 + 8.0 * alpha / ((6.28002 + alpha) * nJacobi * nJacobi));
 98       root += (root - fAbscissa[nJacobi - 3]) * root1 * root2 * root3;
 99     }
100     else
101     {
102       root = 3.0 * fAbscissa[i - 2] - 3.0 * fAbscissa[i - 3] + fAbscissa[i - 4];
103     }
104     alphaBeta = alpha + beta;
105     for(k = 1; k <= maxNumber; ++k)
106     {
107       temp    = 2.0 + alphaBeta;
108       newton1 = (alpha - beta + temp * root) / 2.0;
109       newton2 = 1.0;
110       for(G4int j = 2; j <= nJacobi; ++j)
111       {
112         newton3 = newton2;
113         newton2 = newton1;
114         temp    = 2 * j + alphaBeta;
115         a       = 2 * j * (j + alphaBeta) * (temp - 2.0);
116         b       = (temp - 1.0) *
117             (alpha * alpha - beta * beta + temp * (temp - 2.0) * root);
118         c       = 2.0 * (j - 1 + alpha) * (j - 1 + beta) * temp;
119         newton1 = (b * newton2 - c * newton3) / a;
120       }
121       newton0 = (nJacobi * (alpha - beta - temp * root) * newton1 +
122                  2.0 * (nJacobi + alpha) * (nJacobi + beta) * newton2) /
123                 (temp * (1.0 - root * root));
124       rootTemp = root;
125       root     = rootTemp - newton1 / newton0;
126       if(std::fabs(root - rootTemp) <= tolerance)
127       {
128         break;
129       }
130     }
131     if(k > maxNumber)
132     {
133       G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange",
134                   FatalException, "Too many iterations in constructor.");
135     }
136     fAbscissa[i - 1] = root;
137     fWeight[i - 1] =
138       std::exp(GammaLogarithm((G4double)(alpha + nJacobi)) +
139                GammaLogarithm((G4double)(beta + nJacobi)) -
140                GammaLogarithm((G4double)(nJacobi + 1.0)) -
141                GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0))) *
142       temp * std::pow(2.0, alphaBeta) / (newton0 * newton2);
143   }
144 }
145 
146 // ----------------------------------------------------------
147 //
148 // Gauss-Jacobi method for integration of
149 // ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
150 // from minus unit to plus unit .
151 
152 G4double G4GaussJacobiQ::Integral() const
153 {
154   G4double integral = 0.0;
155   for(G4int i = 0; i < fNumber; ++i)
156   {
157     integral += fWeight[i] * fFunction(fAbscissa[i]);
158   }
159   return integral;
160 }
161